Decisive Factors in the Annotation of Emotions for Spoken Dialogue Systems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Zoraida Callejas , Ramón López-Cózar

ABSTRACT

The recognition of human emotions is a very important task towards implementing more natural computer interfaces. A good annotation of the emotional corpora employed by researchers is fundamental to optimize the performance of the emotion recognizers developed. In this paper we discuss several aspects to be considered in order to obtain as much information as possible from this kind of corpora, and propose a novel method to include them automatically during the annotation procedure. The experimental results show that considering information about the usersystem interaction context, as well as the neutral speaking style of users, yields a more fine-grained human annotation and can improve machine-learned annotation accuracy by 24.52%, in comparison with the classical annotation based on acoustic features. More... »

PAGES

747-754

References to SciGraph publications

  • 2005. Real-Life Emotion Representation and Detection in Call Centers Data in AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION
  • 2005. Grounding Emotions in Human-Machine Conversational Systems in INTELLIGENT TECHNOLOGIES FOR INTERACTIVE ENTERTAINMENT
  • Book

    TITLE

    Computer Recognition Systems 2

    ISBN

    978-3-540-75174-8
    978-3-540-75175-5

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-75175-5_92

    DOI

    http://dx.doi.org/10.1007/978-3-540-75175-5_92

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037852955


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Granada", 
              "id": "https://www.grid.ac/institutes/grid.4489.1", 
              "name": [
                "Dept. Languages and Computer Systems, University of Granada, 18071, Granada, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Callejas", 
            "givenName": "Zoraida", 
            "id": "sg:person.016307634167.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016307634167.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Granada", 
              "id": "https://www.grid.ac/institutes/grid.4489.1", 
              "name": [
                "Dept. Languages and Computer Systems, University of Granada, 18071, Granada, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00f3pez-C\u00f3zar", 
            "givenName": "Ram\u00f3n", 
            "id": "sg:person.013113720067.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113720067.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/11573548_95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000453836", 
              "https://doi.org/10.1007/11573548_95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11573548_95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000453836", 
              "https://doi.org/10.1007/11573548_95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11590323_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004257803", 
              "https://doi.org/10.1007/11590323_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11590323_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004257803", 
              "https://doi.org/10.1007/11590323_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11590323_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004257803", 
              "https://doi.org/10.1007/11590323_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsa.2004.838534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061786254"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007", 
        "datePublishedReg": "2007-01-01", 
        "description": "The recognition of human emotions is a very important task towards implementing more natural computer interfaces. A good annotation of the emotional corpora employed by researchers is fundamental to optimize the performance of the emotion recognizers developed. In this paper we discuss several aspects to be considered in order to obtain as much information as possible from this kind of corpora, and propose a novel method to include them automatically during the annotation procedure. The experimental results show that considering information about the usersystem interaction context, as well as the neutral speaking style of users, yields a more fine-grained human annotation and can improve machine-learned annotation accuracy by 24.52%, in comparison with the classical annotation based on acoustic features.", 
        "editor": [
          {
            "familyName": "Kurzynski", 
            "givenName": "Marek", 
            "type": "Person"
          }, 
          {
            "familyName": "Puchala", 
            "givenName": "Edward", 
            "type": "Person"
          }, 
          {
            "familyName": "Wozniak", 
            "givenName": "Michal", 
            "type": "Person"
          }, 
          {
            "familyName": "Zolnierek", 
            "givenName": "Andrzej", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-75175-5_92", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-75174-8", 
            "978-3-540-75175-5"
          ], 
          "name": "Computer Recognition Systems 2", 
          "type": "Book"
        }, 
        "name": "Decisive Factors in the Annotation of Emotions for Spoken Dialogue Systems", 
        "pagination": "747-754", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-75175-5_92"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b45227239c141a1e6c11d2e42a7f25a34fb9971d4b2eaf4f330c4bdeb3148332"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037852955"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-75175-5_92", 
          "https://app.dimensions.ai/details/publication/pub.1037852955"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99843_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-75175-5_92"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75175-5_92'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75175-5_92'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75175-5_92'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75175-5_92'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-75175-5_92 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Ncc440e3d4c914d37a7979fd99736e02a
    4 schema:citation sg:pub.10.1007/11573548_95
    5 sg:pub.10.1007/11590323_15
    6 https://doi.org/10.1109/tsa.2004.838534
    7 schema:datePublished 2007
    8 schema:datePublishedReg 2007-01-01
    9 schema:description The recognition of human emotions is a very important task towards implementing more natural computer interfaces. A good annotation of the emotional corpora employed by researchers is fundamental to optimize the performance of the emotion recognizers developed. In this paper we discuss several aspects to be considered in order to obtain as much information as possible from this kind of corpora, and propose a novel method to include them automatically during the annotation procedure. The experimental results show that considering information about the usersystem interaction context, as well as the neutral speaking style of users, yields a more fine-grained human annotation and can improve machine-learned annotation accuracy by 24.52%, in comparison with the classical annotation based on acoustic features.
    10 schema:editor Nebc0e24a4d03491d9ee8458cbb430d28
    11 schema:genre chapter
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf Nab86ebe57ad3416385087487939523a0
    15 schema:name Decisive Factors in the Annotation of Emotions for Spoken Dialogue Systems
    16 schema:pagination 747-754
    17 schema:productId N5b9a3debab4d4c5185068c38ffc06d5b
    18 N5f12f154c0f5454488c3c2b892f8a660
    19 Ne419b336bd7a4f6ea3c6da65673f1470
    20 schema:publisher Nf8aff5c63fbd478aaba24873e5f7c6c5
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037852955
    22 https://doi.org/10.1007/978-3-540-75175-5_92
    23 schema:sdDatePublished 2019-04-16T05:39
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N33ddc44583cd49a18b60d9ffcd7ddfea
    26 schema:url https://link.springer.com/10.1007%2F978-3-540-75175-5_92
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset chapters
    29 rdf:type schema:Chapter
    30 N24c10c044cb64d3fa66f82c834f792ca rdf:first N7163eb6bbaa64cca8f2a6c296e638f50
    31 rdf:rest Na392d641f55d4db5a50d59b7c9fdd042
    32 N33510893ea4d416daf7f47b9d64690b1 rdf:first Nec68e55440b84a5ab3da66c9e13a8c21
    33 rdf:rest rdf:nil
    34 N33ddc44583cd49a18b60d9ffcd7ddfea schema:name Springer Nature - SN SciGraph project
    35 rdf:type schema:Organization
    36 N54d99f32f7234690b05f5ee5f63c3ee6 rdf:first sg:person.013113720067.02
    37 rdf:rest rdf:nil
    38 N58fd41c0297249a9b87e516b16dd0a6a schema:familyName Wozniak
    39 schema:givenName Michal
    40 rdf:type schema:Person
    41 N5b9a3debab4d4c5185068c38ffc06d5b schema:name doi
    42 schema:value 10.1007/978-3-540-75175-5_92
    43 rdf:type schema:PropertyValue
    44 N5f12f154c0f5454488c3c2b892f8a660 schema:name dimensions_id
    45 schema:value pub.1037852955
    46 rdf:type schema:PropertyValue
    47 N7163eb6bbaa64cca8f2a6c296e638f50 schema:familyName Puchala
    48 schema:givenName Edward
    49 rdf:type schema:Person
    50 Na392d641f55d4db5a50d59b7c9fdd042 rdf:first N58fd41c0297249a9b87e516b16dd0a6a
    51 rdf:rest N33510893ea4d416daf7f47b9d64690b1
    52 Nab86ebe57ad3416385087487939523a0 schema:isbn 978-3-540-75174-8
    53 978-3-540-75175-5
    54 schema:name Computer Recognition Systems 2
    55 rdf:type schema:Book
    56 Ncc440e3d4c914d37a7979fd99736e02a rdf:first sg:person.016307634167.10
    57 rdf:rest N54d99f32f7234690b05f5ee5f63c3ee6
    58 Ne419b336bd7a4f6ea3c6da65673f1470 schema:name readcube_id
    59 schema:value b45227239c141a1e6c11d2e42a7f25a34fb9971d4b2eaf4f330c4bdeb3148332
    60 rdf:type schema:PropertyValue
    61 Ne9096ece5202422899d217bc42a945a8 schema:familyName Kurzynski
    62 schema:givenName Marek
    63 rdf:type schema:Person
    64 Nebc0e24a4d03491d9ee8458cbb430d28 rdf:first Ne9096ece5202422899d217bc42a945a8
    65 rdf:rest N24c10c044cb64d3fa66f82c834f792ca
    66 Nec68e55440b84a5ab3da66c9e13a8c21 schema:familyName Zolnierek
    67 schema:givenName Andrzej
    68 rdf:type schema:Person
    69 Nf8aff5c63fbd478aaba24873e5f7c6c5 schema:location Berlin, Heidelberg
    70 schema:name Springer Berlin Heidelberg
    71 rdf:type schema:Organisation
    72 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Psychology and Cognitive Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Psychology
    77 rdf:type schema:DefinedTerm
    78 sg:person.013113720067.02 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
    79 schema:familyName López-Cózar
    80 schema:givenName Ramón
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113720067.02
    82 rdf:type schema:Person
    83 sg:person.016307634167.10 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
    84 schema:familyName Callejas
    85 schema:givenName Zoraida
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016307634167.10
    87 rdf:type schema:Person
    88 sg:pub.10.1007/11573548_95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000453836
    89 https://doi.org/10.1007/11573548_95
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/11590323_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004257803
    92 https://doi.org/10.1007/11590323_15
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1109/tsa.2004.838534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061786254
    95 rdf:type schema:CreativeWork
    96 https://www.grid.ac/institutes/grid.4489.1 schema:alternateName University of Granada
    97 schema:name Dept. Languages and Computer Systems, University of Granada, 18071, Granada, Spain
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...