SVM-Based Time Series Prediction with Nonlinear Dynamics Methods View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007-01-01

AUTHORS

Francesco Camastra , Maurizio Filippone

ABSTRACT

A key problem in time series prediction using autoregressive models is to fix the model order, namely the number of past samples required to model the time series adequately. The estimation of the model order using cross-validation is a long process. In this paper we explore faster alternative to cross-validation, based on nonlinear dynamics methods, namely Grassberger-Procaccia, Kégl and False Nearest Neighbors algorithms. Once the model order is obtained, it is used to carry out the prediction, performed by a SVM. Experiments on three real data time series show that nonlinear dynamics methods have performances very close to the cross-validation ones. More... »

PAGES

300-307

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_37

DOI

http://dx.doi.org/10.1007/978-3-540-74829-8_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036821157


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Applicate, Universit\u00e1 di Napoli Parthenope Via A. De Gasperi 5, 80133 Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.17682.3a", 
          "name": [
            "Dipartimento di Scienze Applicate, Universit\u00e1 di Napoli Parthenope Via A. De Gasperi 5, 80133 Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camastra", 
        "givenName": "Francesco", 
        "id": "sg:person.0670572515.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670572515.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DISI, University of Genova and CNISM, Via Dodecaneso 35, 16146 Genova, Email: masulli@disi.unige.it, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "DISI, University of Genova and CNISM, Via Dodecaneso 35, 16146 Genova, Email: masulli@disi.unige.it, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "A key problem in time series prediction using autoregressive models is to fix the model order, namely the number of past samples required to model the time series adequately. The estimation of the model order using cross-validation is a long process. In this paper we explore faster alternative to cross-validation, based on nonlinear dynamics methods, namely Grassberger-Procaccia, K\u00e9gl and False Nearest Neighbors algorithms. Once the model order is obtained, it is used to carry out the prediction, performed by a SVM. Experiments on three real data time series show that nonlinear dynamics methods have performances very close to the cross-validation ones.", 
    "editor": [
      {
        "familyName": "Apolloni", 
        "givenName": "Bruno", 
        "type": "Person"
      }, 
      {
        "familyName": "Howlett", 
        "givenName": "Robert J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Lakhmi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74829-8_37", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74828-1", 
        "978-3-540-74829-8"
      ], 
      "name": "Knowledge-Based Intelligent Information and Engineering Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "time series prediction", 
      "series prediction", 
      "nonlinear dynamics methods", 
      "model order", 
      "cross-validation one", 
      "real data time series", 
      "Nearest Neighbor", 
      "False Nearest Neighbors", 
      "key problem", 
      "Grassberger-Procaccia", 
      "time series", 
      "data time series", 
      "SVM", 
      "past samples", 
      "autoregressive model", 
      "dynamics method", 
      "K\u00e9gl", 
      "neighbors", 
      "order", 
      "method", 
      "prediction", 
      "estimation", 
      "performance", 
      "problem", 
      "model", 
      "experiments", 
      "one", 
      "number", 
      "process", 
      "series", 
      "long process", 
      "samples", 
      "paper"
    ], 
    "name": "SVM-Based Time Series Prediction with Nonlinear Dynamics Methods", 
    "pagination": "300-307", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036821157"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74829-8_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74829-8_37", 
      "https://app.dimensions.ai/details/publication/pub.1036821157"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_11.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-74829-8_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_37'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74829-8_37 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf4217fc21d8a404dbb995dd4de8a38f8
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description A key problem in time series prediction using autoregressive models is to fix the model order, namely the number of past samples required to model the time series adequately. The estimation of the model order using cross-validation is a long process. In this paper we explore faster alternative to cross-validation, based on nonlinear dynamics methods, namely Grassberger-Procaccia, Kégl and False Nearest Neighbors algorithms. Once the model order is obtained, it is used to carry out the prediction, performed by a SVM. Experiments on three real data time series show that nonlinear dynamics methods have performances very close to the cross-validation ones.
7 schema:editor Nfdc126327d014a94b3ad1ad730adbc43
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Ndc4df22773fd47278b952a0617047539
12 schema:keywords False Nearest Neighbors
13 Grassberger-Procaccia
14 Kégl
15 Nearest Neighbor
16 SVM
17 autoregressive model
18 cross-validation one
19 data time series
20 dynamics method
21 estimation
22 experiments
23 key problem
24 long process
25 method
26 model
27 model order
28 neighbors
29 nonlinear dynamics methods
30 number
31 one
32 order
33 paper
34 past samples
35 performance
36 prediction
37 problem
38 process
39 real data time series
40 samples
41 series
42 series prediction
43 time series
44 time series prediction
45 schema:name SVM-Based Time Series Prediction with Nonlinear Dynamics Methods
46 schema:pagination 300-307
47 schema:productId N183bd58271e9447e979c15d1ccf88770
48 N7aea7c9a29b14b2cb1bc62527dc1f044
49 schema:publisher Na6a51a68f9e94787a710a0f809d8b7de
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036821157
51 https://doi.org/10.1007/978-3-540-74829-8_37
52 schema:sdDatePublished 2022-01-01T19:06
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nd12b74731583453d85cc4c7f006467eb
55 schema:url https://doi.org/10.1007/978-3-540-74829-8_37
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N01bbeff30d844b1594cc4f9fc11e4836 rdf:first N66e1481a22884ec6b938bf79cd9bb321
60 rdf:rest N79602fed06f246b8a7beab918b4a0e8a
61 N183bd58271e9447e979c15d1ccf88770 schema:name dimensions_id
62 schema:value pub.1036821157
63 rdf:type schema:PropertyValue
64 N3c515c50dab84990962d3f131a15d3bc schema:familyName Jain
65 schema:givenName Lakhmi
66 rdf:type schema:Person
67 N430cb5c773f74249ba3212356410a767 schema:familyName Apolloni
68 schema:givenName Bruno
69 rdf:type schema:Person
70 N66e1481a22884ec6b938bf79cd9bb321 schema:familyName Howlett
71 schema:givenName Robert J.
72 rdf:type schema:Person
73 N79602fed06f246b8a7beab918b4a0e8a rdf:first N3c515c50dab84990962d3f131a15d3bc
74 rdf:rest rdf:nil
75 N7977cb8ba79141a3b1d3325a0ba2b966 rdf:first sg:person.07706215665.03
76 rdf:rest rdf:nil
77 N7aea7c9a29b14b2cb1bc62527dc1f044 schema:name doi
78 schema:value 10.1007/978-3-540-74829-8_37
79 rdf:type schema:PropertyValue
80 Na6a51a68f9e94787a710a0f809d8b7de schema:name Springer Nature
81 rdf:type schema:Organisation
82 Nd12b74731583453d85cc4c7f006467eb schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Ndc4df22773fd47278b952a0617047539 schema:isbn 978-3-540-74828-1
85 978-3-540-74829-8
86 schema:name Knowledge-Based Intelligent Information and Engineering Systems
87 rdf:type schema:Book
88 Nf4217fc21d8a404dbb995dd4de8a38f8 rdf:first sg:person.0670572515.64
89 rdf:rest N7977cb8ba79141a3b1d3325a0ba2b966
90 Nfdc126327d014a94b3ad1ad730adbc43 rdf:first N430cb5c773f74249ba3212356410a767
91 rdf:rest N01bbeff30d844b1594cc4f9fc11e4836
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
96 schema:name Statistics
97 rdf:type schema:DefinedTerm
98 sg:person.0670572515.64 schema:affiliation grid-institutes:grid.17682.3a
99 schema:familyName Camastra
100 schema:givenName Francesco
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670572515.64
102 rdf:type schema:Person
103 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.5606.5
104 schema:familyName Filippone
105 schema:givenName Maurizio
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
107 rdf:type schema:Person
108 grid-institutes:grid.17682.3a schema:alternateName Dipartimento di Scienze Applicate, Universitá di Napoli Parthenope Via A. De Gasperi 5, 80133 Napoli, Italy
109 schema:name Dipartimento di Scienze Applicate, Universitá di Napoli Parthenope Via A. De Gasperi 5, 80133 Napoli, Italy
110 rdf:type schema:Organization
111 grid-institutes:grid.5606.5 schema:alternateName DISI, University of Genova and CNISM, Via Dodecaneso 35, 16146 Genova, Email: masulli@disi.unige.it, Italy
112 schema:name DISI, University of Genova and CNISM, Via Dodecaneso 35, 16146 Genova, Email: masulli@disi.unige.it, Italy
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...