Models for Identifying Structures in the Data: A Performance Comparison View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Anna Esposito , Antonietta M. Esposito , Flora Giudicepietro , Maria Marinaro , Silvia Scarpetta

ABSTRACT

This paper reports on the unsupervised analysis of seismic signals recorded in Italy, respectively on the Vesuvius volcano, located in Naples, and on the Stromboli volcano, located North of Eastern Sicily. The Vesuvius dataset is composed of earthquakes and false events like thunders, man-made quarry and undersea explosions. The Stromboli dataset consists of explosion-quakes, landslides and volcanic microtremor signals. The aim of this paper is to apply on these datasets three projection methods, the linear Principal Component Analysis (PCA), the Self-Organizing Map (SOM), and the Curvilinear Component Analysis (CCA), in order to compare their performance. Since these algorithms are well known to be able to exploit structures and organize data providing a clear framework for understanding and interpreting their relationships, this work examines the category of structural information that they can provide on our specific sets. Moreover, the paper suggests a breakthrough in the application area of the SOM, used here for clustering different seismic signals. The results show that, among the three above techniques, SOM better visualizes the complex set of high-dimensional data discovering their intrinsic structure and eventually appropriately clustering the different signal typologies under examination, discriminating the explosion-quakes from the landslides and microtremor recorded at the Stromboli volcano, and the earthquakes from natural (thunders) and artificial (quarry blasts and undersea explosions) events recorded at the Vesuvius volcano. More... »

PAGES

275-283

References to SciGraph publications

Book

TITLE

Knowledge-Based Intelligent Information and Engineering Systems

ISBN

978-3-540-74828-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_34

DOI

http://dx.doi.org/10.1007/978-3-540-74829-8_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030179632


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Second University of Naples", 
          "id": "https://www.grid.ac/institutes/grid.9841.4", 
          "name": [
            "Dipartimento di Psicologia, Seconda Universit\u00e0 di Napoli, and IIASS, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esposito", 
        "givenName": "Anna", 
        "id": "sg:person.011031612133.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031612133.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Geophysics and Volcanology", 
          "id": "https://www.grid.ac/institutes/grid.410348.a", 
          "name": [
            "Istituto Nazionale di Geofisica e Vulcanologia, (Osservatorio Vesuviano), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esposito", 
        "givenName": "Antonietta M.", 
        "id": "sg:person.013641014645.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641014645.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Geophysics and Volcanology", 
          "id": "https://www.grid.ac/institutes/grid.410348.a", 
          "name": [
            "Istituto Nazionale di Geofisica e Vulcanologia, (Osservatorio Vesuviano), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giudicepietro", 
        "givenName": "Flora", 
        "id": "sg:person.012176375607.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176375607.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Salerno, INFN, and INFM Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinaro", 
        "givenName": "Maria", 
        "id": "sg:person.01027564003.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027564003.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Salerno, INFN, and INFM Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scarpetta", 
        "givenName": "Silvia", 
        "id": "sg:person.01134412304.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134412304.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1785/0120030075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001156576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2004.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013532182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11731177_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014192788", 
          "https://doi.org/10.1007/11731177_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11731177_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014192788", 
          "https://doi.org/10.1007/11731177_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97966-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409031", 
          "https://doi.org/10.1007/978-3-642-97966-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97966-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409031", 
          "https://doi.org/10.1007/978-3-642-97966-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120050097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041896460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.554199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1975.9792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061443031"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "This paper reports on the unsupervised analysis of seismic signals recorded in Italy, respectively on the Vesuvius volcano, located in Naples, and on the Stromboli volcano, located North of Eastern Sicily. The Vesuvius dataset is composed of earthquakes and false events like thunders, man-made quarry and undersea explosions. The Stromboli dataset consists of explosion-quakes, landslides and volcanic microtremor signals. The aim of this paper is to apply on these datasets three projection methods, the linear Principal Component Analysis (PCA), the Self-Organizing Map (SOM), and the Curvilinear Component Analysis (CCA), in order to compare their performance. Since these algorithms are well known to be able to exploit structures and organize data providing a clear framework for understanding and interpreting their relationships, this work examines the category of structural information that they can provide on our specific sets. Moreover, the paper suggests a breakthrough in the application area of the SOM, used here for clustering different seismic signals. The results show that, among the three above techniques, SOM better visualizes the complex set of high-dimensional data discovering their intrinsic structure and eventually appropriately clustering the different signal typologies under examination, discriminating the explosion-quakes from the landslides and microtremor recorded at the Stromboli volcano, and the earthquakes from natural (thunders) and artificial (quarry blasts and undersea explosions) events recorded at the Vesuvius volcano.", 
    "editor": [
      {
        "familyName": "Apolloni", 
        "givenName": "Bruno", 
        "type": "Person"
      }, 
      {
        "familyName": "Howlett", 
        "givenName": "Robert J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Lakhmi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74829-8_34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74828-1"
      ], 
      "name": "Knowledge-Based Intelligent Information and Engineering Systems", 
      "type": "Book"
    }, 
    "name": "Models for Identifying Structures in the Data: A Performance Comparison", 
    "pagination": "275-283", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74829-8_34"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fc5b5adae717b73d90ec920574e8b24f5a719daaf0a0682805eb80873ef50b3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030179632"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74829-8_34", 
      "https://app.dimensions.ai/details/publication/pub.1030179632"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-74829-8_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_34'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74829-8_34 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf5c5050f42c64286a4d44e56ffbcfc2d
4 schema:citation sg:pub.10.1007/11731177_11
5 sg:pub.10.1007/978-1-4757-1904-8
6 sg:pub.10.1007/978-3-642-97966-8
7 https://doi.org/10.1016/j.neucom.2004.01.007
8 https://doi.org/10.1109/72.554199
9 https://doi.org/10.1109/proc.1975.9792
10 https://doi.org/10.1785/0120030075
11 https://doi.org/10.1785/0120050097
12 schema:datePublished 2007
13 schema:datePublishedReg 2007-01-01
14 schema:description This paper reports on the unsupervised analysis of seismic signals recorded in Italy, respectively on the Vesuvius volcano, located in Naples, and on the Stromboli volcano, located North of Eastern Sicily. The Vesuvius dataset is composed of earthquakes and false events like thunders, man-made quarry and undersea explosions. The Stromboli dataset consists of explosion-quakes, landslides and volcanic microtremor signals. The aim of this paper is to apply on these datasets three projection methods, the linear Principal Component Analysis (PCA), the Self-Organizing Map (SOM), and the Curvilinear Component Analysis (CCA), in order to compare their performance. Since these algorithms are well known to be able to exploit structures and organize data providing a clear framework for understanding and interpreting their relationships, this work examines the category of structural information that they can provide on our specific sets. Moreover, the paper suggests a breakthrough in the application area of the SOM, used here for clustering different seismic signals. The results show that, among the three above techniques, SOM better visualizes the complex set of high-dimensional data discovering their intrinsic structure and eventually appropriately clustering the different signal typologies under examination, discriminating the explosion-quakes from the landslides and microtremor recorded at the Stromboli volcano, and the earthquakes from natural (thunders) and artificial (quarry blasts and undersea explosions) events recorded at the Vesuvius volcano.
15 schema:editor N6b814f7555534ed598949eefc25325bb
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nead4a8d826be48ca8d34658f52ba717d
20 schema:name Models for Identifying Structures in the Data: A Performance Comparison
21 schema:pagination 275-283
22 schema:productId N093b5df5bb4b4c9e8248cef3253cdb2f
23 N3d3ba258776f4bad894b3df0f811faf9
24 Nfcc4b256f7ca4e85aacbd03c067c4ebd
25 schema:publisher N67d7350bd74d431b8cbc1a506f853d22
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030179632
27 https://doi.org/10.1007/978-3-540-74829-8_34
28 schema:sdDatePublished 2019-04-16T05:37
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nb71134567e1d4442835d35b15117cb83
31 schema:url https://link.springer.com/10.1007%2F978-3-540-74829-8_34
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N093b5df5bb4b4c9e8248cef3253cdb2f schema:name dimensions_id
36 schema:value pub.1030179632
37 rdf:type schema:PropertyValue
38 N0f37999b4cde48b792a9ee5ecc68102b rdf:first sg:person.013641014645.56
39 rdf:rest Nf21324f4f12e472dab05e0d60afa644c
40 N3d3ba258776f4bad894b3df0f811faf9 schema:name readcube_id
41 schema:value 8fc5b5adae717b73d90ec920574e8b24f5a719daaf0a0682805eb80873ef50b3
42 rdf:type schema:PropertyValue
43 N46b69dd82d404b7ca165271ad3802d00 rdf:first sg:person.01027564003.17
44 rdf:rest N7cdaa6cfcf73472887ff5c78a32faac9
45 N60e3fd47ebe14cb1bdc496597f6db2d7 schema:name Dipartimento di Fisica, Università di Salerno, INFN, and INFM Salerno, Italy
46 rdf:type schema:Organization
47 N67d7350bd74d431b8cbc1a506f853d22 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N6b814f7555534ed598949eefc25325bb rdf:first Nb7548c288dd940d4a9137d16e13d58e7
51 rdf:rest Ndf0fe257604444d9b31c3b88b9ea5d73
52 N7cdaa6cfcf73472887ff5c78a32faac9 rdf:first sg:person.01134412304.81
53 rdf:rest rdf:nil
54 N96fa05c1e21640c293be077791492569 schema:name Dipartimento di Fisica, Università di Salerno, INFN, and INFM Salerno, Italy
55 rdf:type schema:Organization
56 Nb71134567e1d4442835d35b15117cb83 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nb7548c288dd940d4a9137d16e13d58e7 schema:familyName Apolloni
59 schema:givenName Bruno
60 rdf:type schema:Person
61 Nb959b74710c9482e98f7b7b901d610b4 schema:familyName Jain
62 schema:givenName Lakhmi
63 rdf:type schema:Person
64 Nc4275a4171a84184bcf892cf120447e9 rdf:first Nb959b74710c9482e98f7b7b901d610b4
65 rdf:rest rdf:nil
66 Ncf79b03aef414f759dd5551007a86bce schema:familyName Howlett
67 schema:givenName Robert J.
68 rdf:type schema:Person
69 Ndf0fe257604444d9b31c3b88b9ea5d73 rdf:first Ncf79b03aef414f759dd5551007a86bce
70 rdf:rest Nc4275a4171a84184bcf892cf120447e9
71 Nead4a8d826be48ca8d34658f52ba717d schema:isbn 978-3-540-74828-1
72 schema:name Knowledge-Based Intelligent Information and Engineering Systems
73 rdf:type schema:Book
74 Nf21324f4f12e472dab05e0d60afa644c rdf:first sg:person.012176375607.09
75 rdf:rest N46b69dd82d404b7ca165271ad3802d00
76 Nf5c5050f42c64286a4d44e56ffbcfc2d rdf:first sg:person.011031612133.55
77 rdf:rest N0f37999b4cde48b792a9ee5ecc68102b
78 Nfcc4b256f7ca4e85aacbd03c067c4ebd schema:name doi
79 schema:value 10.1007/978-3-540-74829-8_34
80 rdf:type schema:PropertyValue
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:person.01027564003.17 schema:affiliation N60e3fd47ebe14cb1bdc496597f6db2d7
88 schema:familyName Marinaro
89 schema:givenName Maria
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027564003.17
91 rdf:type schema:Person
92 sg:person.011031612133.55 schema:affiliation https://www.grid.ac/institutes/grid.9841.4
93 schema:familyName Esposito
94 schema:givenName Anna
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031612133.55
96 rdf:type schema:Person
97 sg:person.01134412304.81 schema:affiliation N96fa05c1e21640c293be077791492569
98 schema:familyName Scarpetta
99 schema:givenName Silvia
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134412304.81
101 rdf:type schema:Person
102 sg:person.012176375607.09 schema:affiliation https://www.grid.ac/institutes/grid.410348.a
103 schema:familyName Giudicepietro
104 schema:givenName Flora
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176375607.09
106 rdf:type schema:Person
107 sg:person.013641014645.56 schema:affiliation https://www.grid.ac/institutes/grid.410348.a
108 schema:familyName Esposito
109 schema:givenName Antonietta M.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641014645.56
111 rdf:type schema:Person
112 sg:pub.10.1007/11731177_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014192788
113 https://doi.org/10.1007/11731177_11
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-1-4757-1904-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639131
116 https://doi.org/10.1007/978-1-4757-1904-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-642-97966-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409031
119 https://doi.org/10.1007/978-3-642-97966-8
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.neucom.2004.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013532182
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/72.554199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218855
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/proc.1975.9792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061443031
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1785/0120030075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001156576
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1785/0120050097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041896460
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.410348.a schema:alternateName National Institute of Geophysics and Volcanology
132 schema:name Istituto Nazionale di Geofisica e Vulcanologia, (Osservatorio Vesuviano), Italy
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.9841.4 schema:alternateName Second University of Naples
135 schema:name Dipartimento di Psicologia, Seconda Università di Napoli, and IIASS, Italy
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...