Membership Embedding Space Approach and Spectral Clustering View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007-01-01

AUTHORS

Stefano Rovetta , Francesco Masulli , Maurizio Filippone

ABSTRACT

The data representation strategy termed “Membership Embedding” is a type of similarity-based representation that uses a set of data items in an input space as reference points (probes), and represents all data in terms of their membership to the fuzzy concepts represented by the probes. The technique has been proposed as a concise representation for improving the data clustering task. In this contribution, it is shown that this representation strategy yields a spectral clustering formulation, and this may account for the improvement in clustering performance previously reported. Then the problem of selecting an appropriate set of probes is discussed in view of this result. More... »

PAGES

901-908

Book

TITLE

Knowledge-Based Intelligent Information and Engineering Systems

ISBN

978-3-540-74828-1
978-3-540-74829-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_110

DOI

http://dx.doi.org/10.1007/978-3-540-74829-8_110

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031280425


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer and Information Sciences, University of Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Department of Computer and Information Sciences, University of Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rovetta", 
        "givenName": "Stefano", 
        "id": "sg:person.015767137221.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer and Information Sciences, University of Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Department of Computer and Information Sciences, University of Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "id": "sg:person.013052261502.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer and Information Sciences, University of Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Department of Computer and Information Sciences, University of Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "The data representation strategy termed \u201cMembership Embedding\u201d is a type of similarity-based representation that uses a set of data items in an input space as reference points (probes), and represents all data in terms of their membership to the fuzzy concepts represented by the probes. The technique has been proposed as a concise representation for improving the data clustering task. In this contribution, it is shown that this representation strategy yields a spectral clustering formulation, and this may account for the improvement in clustering performance previously reported. Then the problem of selecting an appropriate set of probes is discussed in view of this result.", 
    "editor": [
      {
        "familyName": "Apolloni", 
        "givenName": "Bruno", 
        "type": "Person"
      }, 
      {
        "familyName": "Howlett", 
        "givenName": "Robert J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Jain", 
        "givenName": "Lakhmi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74829-8_110", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74828-1", 
        "978-3-540-74829-8"
      ], 
      "name": "Knowledge-Based Intelligent Information and Engineering Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "representation strategy", 
      "strategies", 
      "types", 
      "representation", 
      "set", 
      "input space", 
      "space", 
      "reference point", 
      "point", 
      "data", 
      "terms", 
      "fuzzy concepts", 
      "concept", 
      "probe", 
      "technique", 
      "concise representation", 
      "task", 
      "contribution", 
      "formulation", 
      "improvement", 
      "performance", 
      "problem", 
      "appropriate set", 
      "results", 
      "space approach", 
      "approach", 
      "spectral clustering", 
      "embedding", 
      "similarity-based representation", 
      "data items", 
      "items", 
      "membership", 
      "view", 
      "clustering"
    ], 
    "name": "Membership Embedding Space Approach and Spectral Clustering", 
    "pagination": "901-908", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031280425"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74829-8_110"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74829-8_110", 
      "https://app.dimensions.ai/details/publication/pub.1031280425"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_26.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-74829-8_110"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_110'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_110'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_110'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74829-8_110'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74829-8_110 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N634b6bfd34714ce39551f2291ba13ee4
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description The data representation strategy termed “Membership Embedding” is a type of similarity-based representation that uses a set of data items in an input space as reference points (probes), and represents all data in terms of their membership to the fuzzy concepts represented by the probes. The technique has been proposed as a concise representation for improving the data clustering task. In this contribution, it is shown that this representation strategy yields a spectral clustering formulation, and this may account for the improvement in clustering performance previously reported. Then the problem of selecting an appropriate set of probes is discussed in view of this result.
7 schema:editor Nbd986d46dd8b42f5b313b5eb783c2d73
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N397523ded47145a785f72fcc2bcd01b9
12 schema:keywords approach
13 appropriate set
14 clustering
15 concept
16 concise representation
17 contribution
18 data
19 data items
20 embedding
21 formulation
22 fuzzy concepts
23 improvement
24 input space
25 items
26 membership
27 performance
28 point
29 probe
30 problem
31 reference point
32 representation
33 representation strategy
34 results
35 set
36 similarity-based representation
37 space
38 space approach
39 spectral clustering
40 strategies
41 task
42 technique
43 terms
44 types
45 view
46 schema:name Membership Embedding Space Approach and Spectral Clustering
47 schema:pagination 901-908
48 schema:productId N13e5803523534eceb774fc5e36af4bc0
49 N549f8c24f10140a7a4d9ef2973bbd648
50 schema:publisher N0893426bfc704c7e9d6f694d99423567
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031280425
52 https://doi.org/10.1007/978-3-540-74829-8_110
53 schema:sdDatePublished 2022-05-20T07:44
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N6f881573034c451a8b9d16f0987a5116
56 schema:url https://doi.org/10.1007/978-3-540-74829-8_110
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N0893426bfc704c7e9d6f694d99423567 schema:name Springer Nature
61 rdf:type schema:Organisation
62 N13e5803523534eceb774fc5e36af4bc0 schema:name doi
63 schema:value 10.1007/978-3-540-74829-8_110
64 rdf:type schema:PropertyValue
65 N2c28811e8de54d928f75d9df6df8b9e1 schema:familyName Howlett
66 schema:givenName Robert J.
67 rdf:type schema:Person
68 N36ed0823acb44b99ae582eb0816c8072 rdf:first sg:person.07706215665.03
69 rdf:rest rdf:nil
70 N397523ded47145a785f72fcc2bcd01b9 schema:isbn 978-3-540-74828-1
71 978-3-540-74829-8
72 schema:name Knowledge-Based Intelligent Information and Engineering Systems
73 rdf:type schema:Book
74 N536ca308d1fe4a5bb70bab67b72e3ab4 schema:familyName Jain
75 schema:givenName Lakhmi
76 rdf:type schema:Person
77 N549f8c24f10140a7a4d9ef2973bbd648 schema:name dimensions_id
78 schema:value pub.1031280425
79 rdf:type schema:PropertyValue
80 N634b6bfd34714ce39551f2291ba13ee4 rdf:first sg:person.015767137221.48
81 rdf:rest Neadf32f8e43b4130ba26a1f187f60e88
82 N65047df9d3c0485ca4a5fb96d961c1c6 rdf:first N536ca308d1fe4a5bb70bab67b72e3ab4
83 rdf:rest rdf:nil
84 N6f881573034c451a8b9d16f0987a5116 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N8fd2fff5acf24d4690c65cb8fe6e3f5e schema:familyName Apolloni
87 schema:givenName Bruno
88 rdf:type schema:Person
89 N93ed90cd1a7d4a14b670b6b95c6388b5 rdf:first N2c28811e8de54d928f75d9df6df8b9e1
90 rdf:rest N65047df9d3c0485ca4a5fb96d961c1c6
91 Nbd986d46dd8b42f5b313b5eb783c2d73 rdf:first N8fd2fff5acf24d4690c65cb8fe6e3f5e
92 rdf:rest N93ed90cd1a7d4a14b670b6b95c6388b5
93 Neadf32f8e43b4130ba26a1f187f60e88 rdf:first sg:person.013052261502.67
94 rdf:rest N36ed0823acb44b99ae582eb0816c8072
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information Systems
100 rdf:type schema:DefinedTerm
101 sg:person.013052261502.67 schema:affiliation grid-institutes:grid.5606.5
102 schema:familyName Masulli
103 schema:givenName Francesco
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67
105 rdf:type schema:Person
106 sg:person.015767137221.48 schema:affiliation grid-institutes:grid.5606.5
107 schema:familyName Rovetta
108 schema:givenName Stefano
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48
110 rdf:type schema:Person
111 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.5606.5
112 schema:familyName Filippone
113 schema:givenName Maurizio
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
115 rdf:type schema:Person
116 grid-institutes:grid.5606.5 schema:alternateName Department of Computer and Information Sciences, University of Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy
117 schema:name Department of Computer and Information Sciences, University of Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...