Multilayers with Ultra-Short Periods View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008-01-01

AUTHORS

Matej Jergel , Eva Majková , Christine Borel , Christian Morawe , Igor MaŤko

ABSTRACT

Multilayers with ultra-short periods (less than 2nm) are needed for particular applications such as mirrors for water-window X-ray microscopy and gamma-ray telescopes. Due to the extreme requirements on interface quality, manufacture is challenging even when realized with traditional material pairs. In this chapter, several types of ultra-short period multilayers, prepared by different deposition techniques from constituents with different miscibilities, are studied and compared in terms of the interface quality, structure and thermal stability. Specular/non-specular X-ray reflectometry, transmission electron microscopy and X-ray and electron diffraction were employed to obtain an insight into the interface phenomena. UHV e-beam deposition with optimized in situsubstrate heating was tested successfully as a simpler and cheaper alternative to in situion beam polishing to deposit high quality Cu/Si and Ni/C multilayers. However, true ultra-short periods could not be achieved. Replacement of elemental by compound layers in Ni/B4C multilayers using distributed electron cyclotron resonance sputtering allowed multilayer periods of less than 2 nm to be produced, with enhanced thermal stability up to 500°C compared to Ni/C multialyers. Similar excellent interface quality, ultra-short period and good thermal stability were obtained with Sc/Cr along with negligible miscibility. In both cases, the multilayer decay is controlled by the formation of a fine granular phase from amorphous layers. Vertical correlation of the interface profiles was found to be too weak to be detrimental effect to the specular imaging contrast. The results have direct implications for the targeted optimization of ultra-short period interference mirrors. More... »

PAGES

389-406

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74561-7_24

DOI

http://dx.doi.org/10.1007/978-3-540-74561-7_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007533661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Slovak Academy of Sciences, D\u00fabravsk\u00e1 9, 845 11, Bratislava, Slovakia", 
          "id": "http://www.grid.ac/institutes/grid.424884.6", 
          "name": [
            "Institute of Physics, Slovak Academy of Sciences, D\u00fabravsk\u00e1 9, 845 11, Bratislava, Slovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jergel", 
        "givenName": "Matej", 
        "id": "sg:person.01305651571.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305651571.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Slovak Academy of Sciences, D\u00fabravsk\u00e1 9, 845 11, Bratislava, Slovakia", 
          "id": "http://www.grid.ac/institutes/grid.424884.6", 
          "name": [
            "Institute of Physics, Slovak Academy of Sciences, D\u00fabravsk\u00e1 9, 845 11, Bratislava, Slovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Majkov\u00e1", 
        "givenName": "Eva", 
        "id": "sg:person.01064261111.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261111.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Synchrotron Radiation Facility, 38043, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.5398.7", 
          "name": [
            "European Synchrotron Radiation Facility, 38043, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borel", 
        "givenName": "Christine", 
        "id": "sg:person.0763037571.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763037571.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Synchrotron Radiation Facility, 38043, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.5398.7", 
          "name": [
            "European Synchrotron Radiation Facility, 38043, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morawe", 
        "givenName": "Christian", 
        "id": "sg:person.016301672066.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301672066.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Mat\u00e9riaux et du G\u00e9nie Physique, 38106, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.463753.0", 
          "name": [
            "Laboratoire des Mat\u00e9riaux et du G\u00e9nie Physique, 38106, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma\u0164ko", 
        "givenName": "Igor", 
        "id": "sg:person.01107157721.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107157721.68"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "Multilayers with ultra-short periods (less than 2nm) are needed for particular applications such as mirrors for water-window X-ray microscopy and gamma-ray telescopes. Due to the extreme requirements on interface quality, manufacture is challenging even when realized with traditional material pairs. In this chapter, several types of ultra-short period multilayers, prepared by different deposition techniques from constituents with different miscibilities, are studied and compared in terms of the interface quality, structure and thermal stability. Specular/non-specular X-ray reflectometry, transmission electron microscopy and X-ray and electron diffraction were employed to obtain an insight into the interface phenomena. UHV e-beam deposition with optimized in situsubstrate heating was tested successfully as a simpler and cheaper alternative to in situion beam polishing to deposit high quality Cu/Si and Ni/C multilayers. However, true ultra-short periods could not be achieved. Replacement of elemental by compound layers in Ni/B4C multilayers using distributed electron cyclotron resonance sputtering allowed multilayer periods of less than 2 nm to be produced, with enhanced thermal stability up to 500\u00b0C compared to Ni/C multialyers. Similar excellent interface quality, ultra-short period and good thermal stability were obtained with Sc/Cr along with negligible miscibility. In both cases, the multilayer decay is controlled by the formation of a fine granular phase from amorphous layers. Vertical correlation of the interface profiles was found to be too weak to be detrimental effect to the specular imaging contrast. The results have direct implications for the targeted optimization of ultra-short period interference mirrors.", 
    "editor": [
      {
        "familyName": "Erko", 
        "givenName": "Alexei", 
        "type": "Person"
      }, 
      {
        "familyName": "Idir", 
        "givenName": "Mourad", 
        "type": "Person"
      }, 
      {
        "familyName": "Krist", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "familyName": "Michette", 
        "givenName": "Alan G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74561-7_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74560-0", 
        "978-3-540-74561-7"
      ], 
      "name": "Modern Developments in X-Ray and Neutron Optics", 
      "type": "Book"
    }, 
    "keywords": [
      "ultra-short period", 
      "gamma-ray telescope", 
      "interface quality", 
      "Ni/C multilayers", 
      "electron cyclotron resonance sputtering", 
      "excellent interface quality", 
      "different deposition techniques", 
      "interference mirrors", 
      "beam deposition", 
      "transmission electron microscopy", 
      "Cu/Si", 
      "ray microscopy", 
      "ray reflectometry", 
      "electron diffraction", 
      "beam polishing", 
      "UHV e", 
      "B4C multilayers", 
      "period multilayers", 
      "imaging contrast", 
      "multilayer period", 
      "deposition technique", 
      "extreme requirements", 
      "amorphous layer", 
      "thermal stability", 
      "Sc/Cr", 
      "interface phenomena", 
      "electron microscopy", 
      "multilayers", 
      "mirror", 
      "interface profile", 
      "compound layer", 
      "microscopy", 
      "good thermal stability", 
      "granular phase", 
      "telescope", 
      "material pairs", 
      "vertical correlation", 
      "sputtering", 
      "rays", 
      "reflectometry", 
      "different miscibility", 
      "Si", 
      "diffraction", 
      "layer", 
      "decay", 
      "deposition", 
      "heating", 
      "particular application", 
      "miscibility", 
      "targeted optimization", 
      "elemental", 
      "stability", 
      "cheaper alternative", 
      "polishing", 
      "phenomenon", 
      "manufacture", 
      "structure", 
      "pairs", 
      "phase", 
      "direct implications", 
      "formation", 
      "optimization", 
      "technique", 
      "applications", 
      "Cr", 
      "profile", 
      "quality", 
      "detrimental effects", 
      "requirements", 
      "correlation", 
      "effect", 
      "terms", 
      "contrast", 
      "results", 
      "alternative", 
      "constituents", 
      "replacement", 
      "insights", 
      "types", 
      "cases", 
      "chapter", 
      "period", 
      "implications", 
      "traditional material pairs", 
      "ultra-short period multilayers", 
      "situsubstrate heating", 
      "situion beam polishing", 
      "high quality Cu/Si", 
      "quality Cu/Si", 
      "C multilayers", 
      "true ultra-short periods", 
      "Replacement of elemental", 
      "Ni/B4C multilayers", 
      "cyclotron resonance sputtering", 
      "resonance sputtering", 
      "Ni/C multialyers", 
      "C multialyers", 
      "multialyers", 
      "Similar excellent interface quality", 
      "negligible miscibility", 
      "multilayer decay", 
      "fine granular phase", 
      "specular imaging contrast", 
      "ultra-short period interference mirrors", 
      "period interference mirrors"
    ], 
    "name": "Multilayers with Ultra-Short Periods", 
    "pagination": "389-406", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007533661"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74561-7_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74561-7_24", 
      "https://app.dimensions.ai/details/publication/pub.1007533661"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_189.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-74561-7_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74561-7_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74561-7_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74561-7_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74561-7_24'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      23 PREDICATES      129 URIs      122 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74561-7_24 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N18a6c70b32cb4f669f9d5034a2717c0d
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description Multilayers with ultra-short periods (less than 2nm) are needed for particular applications such as mirrors for water-window X-ray microscopy and gamma-ray telescopes. Due to the extreme requirements on interface quality, manufacture is challenging even when realized with traditional material pairs. In this chapter, several types of ultra-short period multilayers, prepared by different deposition techniques from constituents with different miscibilities, are studied and compared in terms of the interface quality, structure and thermal stability. Specular/non-specular X-ray reflectometry, transmission electron microscopy and X-ray and electron diffraction were employed to obtain an insight into the interface phenomena. UHV e-beam deposition with optimized in situsubstrate heating was tested successfully as a simpler and cheaper alternative to in situion beam polishing to deposit high quality Cu/Si and Ni/C multilayers. However, true ultra-short periods could not be achieved. Replacement of elemental by compound layers in Ni/B4C multilayers using distributed electron cyclotron resonance sputtering allowed multilayer periods of less than 2 nm to be produced, with enhanced thermal stability up to 500°C compared to Ni/C multialyers. Similar excellent interface quality, ultra-short period and good thermal stability were obtained with Sc/Cr along with negligible miscibility. In both cases, the multilayer decay is controlled by the formation of a fine granular phase from amorphous layers. Vertical correlation of the interface profiles was found to be too weak to be detrimental effect to the specular imaging contrast. The results have direct implications for the targeted optimization of ultra-short period interference mirrors.
7 schema:editor Nbfa007eb6d614fa3bdabfd6d146362fb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N730d6ffbb529403b93f32d413c0ec9da
12 schema:keywords B4C multilayers
13 C multialyers
14 C multilayers
15 Cr
16 Cu/Si
17 Ni/B4C multilayers
18 Ni/C multialyers
19 Ni/C multilayers
20 Replacement of elemental
21 Sc/Cr
22 Si
23 Similar excellent interface quality
24 UHV e
25 alternative
26 amorphous layer
27 applications
28 beam deposition
29 beam polishing
30 cases
31 chapter
32 cheaper alternative
33 compound layer
34 constituents
35 contrast
36 correlation
37 cyclotron resonance sputtering
38 decay
39 deposition
40 deposition technique
41 detrimental effects
42 different deposition techniques
43 different miscibility
44 diffraction
45 direct implications
46 effect
47 electron cyclotron resonance sputtering
48 electron diffraction
49 electron microscopy
50 elemental
51 excellent interface quality
52 extreme requirements
53 fine granular phase
54 formation
55 gamma-ray telescope
56 good thermal stability
57 granular phase
58 heating
59 high quality Cu/Si
60 imaging contrast
61 implications
62 insights
63 interface phenomena
64 interface profile
65 interface quality
66 interference mirrors
67 layer
68 manufacture
69 material pairs
70 microscopy
71 mirror
72 miscibility
73 multialyers
74 multilayer decay
75 multilayer period
76 multilayers
77 negligible miscibility
78 optimization
79 pairs
80 particular application
81 period
82 period interference mirrors
83 period multilayers
84 phase
85 phenomenon
86 polishing
87 profile
88 quality
89 quality Cu/Si
90 ray microscopy
91 ray reflectometry
92 rays
93 reflectometry
94 replacement
95 requirements
96 resonance sputtering
97 results
98 situion beam polishing
99 situsubstrate heating
100 specular imaging contrast
101 sputtering
102 stability
103 structure
104 targeted optimization
105 technique
106 telescope
107 terms
108 thermal stability
109 traditional material pairs
110 transmission electron microscopy
111 true ultra-short periods
112 types
113 ultra-short period
114 ultra-short period interference mirrors
115 ultra-short period multilayers
116 vertical correlation
117 schema:name Multilayers with Ultra-Short Periods
118 schema:pagination 389-406
119 schema:productId N4a582e4ff2b4458c9641be916d25bf2f
120 Nf092b16ceb6440f5ac62cc576cb6aa1c
121 schema:publisher Nf0d376c3d9cd4a1f8282747024ec281e
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007533661
123 https://doi.org/10.1007/978-3-540-74561-7_24
124 schema:sdDatePublished 2021-12-01T19:59
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N8465420d55944f498a7c888acafd222d
127 schema:url https://doi.org/10.1007/978-3-540-74561-7_24
128 sgo:license sg:explorer/license/
129 sgo:sdDataset chapters
130 rdf:type schema:Chapter
131 N0a5ea8faa5814205b1b472461ccd95e3 rdf:first N0f31d0e443544409ba162ea8815e8f46
132 rdf:rest rdf:nil
133 N0f31d0e443544409ba162ea8815e8f46 schema:familyName Michette
134 schema:givenName Alan G.
135 rdf:type schema:Person
136 N17232fd614894f8296004e44f45794cd rdf:first sg:person.01064261111.15
137 rdf:rest Nd7d9bef629fe499799b53c73f39e770a
138 N18a6c70b32cb4f669f9d5034a2717c0d rdf:first sg:person.01305651571.41
139 rdf:rest N17232fd614894f8296004e44f45794cd
140 N4a582e4ff2b4458c9641be916d25bf2f schema:name doi
141 schema:value 10.1007/978-3-540-74561-7_24
142 rdf:type schema:PropertyValue
143 N5fe3203e0a044f0a84dbc71368b0c13f rdf:first N982887ac10714d64b9e218acd6e8e7f2
144 rdf:rest Nb29cce11e9f24630b533fad97a29a3f8
145 N66b7d99ed7a04ee6a97a8aed2a8c4301 schema:familyName Krist
146 schema:givenName Thomas
147 rdf:type schema:Person
148 N730d6ffbb529403b93f32d413c0ec9da schema:isbn 978-3-540-74560-0
149 978-3-540-74561-7
150 schema:name Modern Developments in X-Ray and Neutron Optics
151 rdf:type schema:Book
152 N732b2399b8c941b6ae05e33ddadfc8c1 rdf:first sg:person.01107157721.68
153 rdf:rest rdf:nil
154 N7562dd0bb57342e9ae4d9952ad6a4bae schema:familyName Erko
155 schema:givenName Alexei
156 rdf:type schema:Person
157 N8465420d55944f498a7c888acafd222d schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 N982887ac10714d64b9e218acd6e8e7f2 schema:familyName Idir
160 schema:givenName Mourad
161 rdf:type schema:Person
162 Nb29cce11e9f24630b533fad97a29a3f8 rdf:first N66b7d99ed7a04ee6a97a8aed2a8c4301
163 rdf:rest N0a5ea8faa5814205b1b472461ccd95e3
164 Nbfa007eb6d614fa3bdabfd6d146362fb rdf:first N7562dd0bb57342e9ae4d9952ad6a4bae
165 rdf:rest N5fe3203e0a044f0a84dbc71368b0c13f
166 Nc53775976b7245838dacab8dc47c2375 rdf:first sg:person.016301672066.19
167 rdf:rest N732b2399b8c941b6ae05e33ddadfc8c1
168 Nd7d9bef629fe499799b53c73f39e770a rdf:first sg:person.0763037571.29
169 rdf:rest Nc53775976b7245838dacab8dc47c2375
170 Nf092b16ceb6440f5ac62cc576cb6aa1c schema:name dimensions_id
171 schema:value pub.1007533661
172 rdf:type schema:PropertyValue
173 Nf0d376c3d9cd4a1f8282747024ec281e schema:name Springer Nature
174 rdf:type schema:Organisation
175 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
176 schema:name Physical Sciences
177 rdf:type schema:DefinedTerm
178 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
179 schema:name Other Physical Sciences
180 rdf:type schema:DefinedTerm
181 sg:person.01064261111.15 schema:affiliation grid-institutes:grid.424884.6
182 schema:familyName Majková
183 schema:givenName Eva
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261111.15
185 rdf:type schema:Person
186 sg:person.01107157721.68 schema:affiliation grid-institutes:grid.463753.0
187 schema:familyName MaŤko
188 schema:givenName Igor
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107157721.68
190 rdf:type schema:Person
191 sg:person.01305651571.41 schema:affiliation grid-institutes:grid.424884.6
192 schema:familyName Jergel
193 schema:givenName Matej
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305651571.41
195 rdf:type schema:Person
196 sg:person.016301672066.19 schema:affiliation grid-institutes:grid.5398.7
197 schema:familyName Morawe
198 schema:givenName Christian
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016301672066.19
200 rdf:type schema:Person
201 sg:person.0763037571.29 schema:affiliation grid-institutes:grid.5398.7
202 schema:familyName Borel
203 schema:givenName Christine
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763037571.29
205 rdf:type schema:Person
206 grid-institutes:grid.424884.6 schema:alternateName Institute of Physics, Slovak Academy of Sciences, Dúbravská 9, 845 11, Bratislava, Slovakia
207 schema:name Institute of Physics, Slovak Academy of Sciences, Dúbravská 9, 845 11, Bratislava, Slovakia
208 rdf:type schema:Organization
209 grid-institutes:grid.463753.0 schema:alternateName Laboratoire des Matériaux et du Génie Physique, 38106, Grenoble, France
210 schema:name Laboratoire des Matériaux et du Génie Physique, 38106, Grenoble, France
211 rdf:type schema:Organization
212 grid-institutes:grid.5398.7 schema:alternateName European Synchrotron Radiation Facility, 38043, Grenoble, France
213 schema:name European Synchrotron Radiation Facility, 38043, Grenoble, France
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...