Hardening Fingerprint Fuzzy Vault Using Password View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007-01-01

AUTHORS

Karthik Nandakumar , Abhishek Nagar , Anil K. Jain

ABSTRACT

Security of stored templates is a critical issue in biometric systems because biometric templates are non-revocable. Fuzzy vault is a cryptographic framework that enables secure template storage by binding the template with a uniformly random key. Though the fuzzy vault framework has proven security properties, it does not provide privacy-enhancing features such as revocability and protection against cross-matching across different biometric systems. Furthermore, non-uniform nature of biometric data can decrease the vault security. To overcome these limitations, we propose a scheme for hardening a fingerprint minutiae-based fuzzy vault using password. Benefits of the proposed password-based hardening technique include template revocability, prevention of cross-matching, enhanced vault security and a reduction in the False Accept Rate of the system without significantly affecting the False Reject Rate. Since the hardening scheme utilizes password only as an additional authentication factor (independent of the key used in the vault), the security provided by the fuzzy vault framework is not affected even when the password is compromised. More... »

PAGES

927-937

Book

TITLE

Advances in Biometrics

ISBN

978-3-540-74548-8
978-3-540-74549-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74549-5_97

DOI

http://dx.doi.org/10.1007/978-3-540-74549-5_97

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037832317


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI \u2013 48824, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI \u2013 48824, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nandakumar", 
        "givenName": "Karthik", 
        "id": "sg:person.013262445601.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262445601.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI \u2013 48824, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI \u2013 48824, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagar", 
        "givenName": "Abhishek", 
        "id": "sg:person.012606063074.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012606063074.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI \u2013 48824, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Computer Science & Engineering, Michigan State University, East Lansing, MI \u2013 48824, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Anil K.", 
        "id": "sg:person.01031110710.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "Security of stored templates is a critical issue in biometric systems because biometric templates are non-revocable. Fuzzy vault is a cryptographic framework that enables secure template storage by binding the template with a uniformly random key. Though the fuzzy vault framework has proven security properties, it does not provide privacy-enhancing features such as revocability and protection against cross-matching across different biometric systems. Furthermore, non-uniform nature of biometric data can decrease the vault security. To overcome these limitations, we propose a scheme for hardening a fingerprint minutiae-based fuzzy vault using password. Benefits of the proposed password-based hardening technique include template revocability, prevention of cross-matching, enhanced vault security and a reduction in the False Accept Rate of the system without significantly affecting the False Reject Rate. Since the hardening scheme utilizes password only as an additional authentication factor (independent of the key used in the vault), the security provided by the fuzzy vault framework is not affected even when the password is compromised.", 
    "editor": [
      {
        "familyName": "Lee", 
        "givenName": "Seong-Whan", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Stan Z.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74549-5_97", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74548-8", 
        "978-3-540-74549-5"
      ], 
      "name": "Advances in Biometrics", 
      "type": "Book"
    }, 
    "keywords": [
      "fuzzy vault framework", 
      "fuzzy vault", 
      "biometric systems", 
      "different biometric systems", 
      "additional authentication factor", 
      "fingerprint fuzzy vault", 
      "privacy-enhancing features", 
      "false accept rate", 
      "false reject rate", 
      "cryptographic framework", 
      "authentication factors", 
      "biometric templates", 
      "security properties", 
      "template storage", 
      "accept rate", 
      "random key", 
      "password", 
      "biometric data", 
      "reject rate", 
      "security", 
      "revocability", 
      "critical issue", 
      "non-uniform nature", 
      "framework", 
      "scheme", 
      "system", 
      "key", 
      "template", 
      "features", 
      "issues", 
      "storage", 
      "technique", 
      "vault", 
      "limitations", 
      "data", 
      "benefits", 
      "protection", 
      "nature", 
      "rate", 
      "properties", 
      "reduction", 
      "factors", 
      "prevention"
    ], 
    "name": "Hardening Fingerprint Fuzzy Vault Using Password", 
    "pagination": "927-937", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037832317"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74549-5_97"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74549-5_97", 
      "https://app.dimensions.ai/details/publication/pub.1037832317"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_290.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-74549-5_97"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74549-5_97'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74549-5_97'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74549-5_97'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74549-5_97'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      22 PREDICATES      67 URIs      60 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74549-5_97 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N05d413996ac1464988d00d4e46687459
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description Security of stored templates is a critical issue in biometric systems because biometric templates are non-revocable. Fuzzy vault is a cryptographic framework that enables secure template storage by binding the template with a uniformly random key. Though the fuzzy vault framework has proven security properties, it does not provide privacy-enhancing features such as revocability and protection against cross-matching across different biometric systems. Furthermore, non-uniform nature of biometric data can decrease the vault security. To overcome these limitations, we propose a scheme for hardening a fingerprint minutiae-based fuzzy vault using password. Benefits of the proposed password-based hardening technique include template revocability, prevention of cross-matching, enhanced vault security and a reduction in the False Accept Rate of the system without significantly affecting the False Reject Rate. Since the hardening scheme utilizes password only as an additional authentication factor (independent of the key used in the vault), the security provided by the fuzzy vault framework is not affected even when the password is compromised.
7 schema:editor N5ea6d0054a9946aa8ea56625587aa9a4
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Nef7cda0b78db45f38565efd451bfa934
11 schema:keywords accept rate
12 additional authentication factor
13 authentication factors
14 benefits
15 biometric data
16 biometric systems
17 biometric templates
18 critical issue
19 cryptographic framework
20 data
21 different biometric systems
22 factors
23 false accept rate
24 false reject rate
25 features
26 fingerprint fuzzy vault
27 framework
28 fuzzy vault
29 fuzzy vault framework
30 issues
31 key
32 limitations
33 nature
34 non-uniform nature
35 password
36 prevention
37 privacy-enhancing features
38 properties
39 protection
40 random key
41 rate
42 reduction
43 reject rate
44 revocability
45 scheme
46 security
47 security properties
48 storage
49 system
50 technique
51 template
52 template storage
53 vault
54 schema:name Hardening Fingerprint Fuzzy Vault Using Password
55 schema:pagination 927-937
56 schema:productId N590912c66bf94581b507ebb59b85121f
57 N8427f85d7f9f4a7b957efacb9a64b92d
58 schema:publisher N17f982f7f21442dd8f248427bd5c7871
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037832317
60 https://doi.org/10.1007/978-3-540-74549-5_97
61 schema:sdDatePublished 2022-12-01T06:50
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N1da0bf182a2f49e1b819e9ec32f30ae5
64 schema:url https://doi.org/10.1007/978-3-540-74549-5_97
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N05d413996ac1464988d00d4e46687459 rdf:first sg:person.013262445601.05
69 rdf:rest Ne738c69fc73d478ea0d5c3b4954ee5b4
70 N17f982f7f21442dd8f248427bd5c7871 schema:name Springer Nature
71 rdf:type schema:Organisation
72 N1da0bf182a2f49e1b819e9ec32f30ae5 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N4f8f58dfd2ae4f6eb5a6f97a1198f2d2 schema:familyName Lee
75 schema:givenName Seong-Whan
76 rdf:type schema:Person
77 N590912c66bf94581b507ebb59b85121f schema:name dimensions_id
78 schema:value pub.1037832317
79 rdf:type schema:PropertyValue
80 N5ea6d0054a9946aa8ea56625587aa9a4 rdf:first N4f8f58dfd2ae4f6eb5a6f97a1198f2d2
81 rdf:rest Nfae92e876f114b388470ac6d086fab3b
82 N8427f85d7f9f4a7b957efacb9a64b92d schema:name doi
83 schema:value 10.1007/978-3-540-74549-5_97
84 rdf:type schema:PropertyValue
85 Ne18e861f3d704ad983455635d3f0fbee schema:familyName Li
86 schema:givenName Stan Z.
87 rdf:type schema:Person
88 Ne738c69fc73d478ea0d5c3b4954ee5b4 rdf:first sg:person.012606063074.23
89 rdf:rest Nf1f72117da00492d92824369c32b5b44
90 Nef7cda0b78db45f38565efd451bfa934 schema:isbn 978-3-540-74548-8
91 978-3-540-74549-5
92 schema:name Advances in Biometrics
93 rdf:type schema:Book
94 Nf1f72117da00492d92824369c32b5b44 rdf:first sg:person.01031110710.30
95 rdf:rest rdf:nil
96 Nfae92e876f114b388470ac6d086fab3b rdf:first Ne18e861f3d704ad983455635d3f0fbee
97 rdf:rest rdf:nil
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
102 schema:name Data Format
103 rdf:type schema:DefinedTerm
104 sg:person.01031110710.30 schema:affiliation grid-institutes:grid.17088.36
105 schema:familyName Jain
106 schema:givenName Anil K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30
108 rdf:type schema:Person
109 sg:person.012606063074.23 schema:affiliation grid-institutes:grid.17088.36
110 schema:familyName Nagar
111 schema:givenName Abhishek
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012606063074.23
113 rdf:type schema:Person
114 sg:person.013262445601.05 schema:affiliation grid-institutes:grid.17088.36
115 schema:familyName Nandakumar
116 schema:givenName Karthik
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262445601.05
118 rdf:type schema:Person
119 grid-institutes:grid.17088.36 schema:alternateName Department of Computer Science & Engineering, Michigan State University, East Lansing, MI – 48824, USA
120 schema:name Department of Computer Science & Engineering, Michigan State University, East Lansing, MI – 48824, USA
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...