A Complexity Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Sen Jia , Yuntao Qian

ABSTRACT

Hyperspectral unmixing, as a blind source separation (BSS) problem, has been intensively studied from independence aspect in the last few years. However, independent component analysis (ICA) can not totally unmix all the materials out because the sources (abundance fractions) are not statistically independent. In this paper a complexity constrained nonnegative matrix factorization (CCNMF) for simultaneously recovering both constituent spectra and correspondent abundances is proposed. Three important facts are exploited: First, the spectral data are nonnegative; second, the variation of the material spectra and abundance images is smooth in time and space respectively; third, in most cases, both of the material spectra and abundances are localized. Experimentations on real data are provided to illustrate the algorithm’s performance. More... »

PAGES

268-276

Book

TITLE

Independent Component Analysis and Signal Separation

ISBN

978-3-540-74493-1
978-3-540-74494-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74494-8_34

DOI

http://dx.doi.org/10.1007/978-3-540-74494-8_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003107905


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Sen", 
        "id": "sg:person.07774604370.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774604370.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Yuntao", 
        "id": "sg:person.07505760577.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505760577.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4419-9170-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004126947", 
          "https://doi.org/10.1007/978-1-4419-9170-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-9170-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004126947", 
          "https://doi.org/10.1007/978-1-4419-9170-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.179107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004828680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976601750265009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009285071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2005.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035495179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2005.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035495179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052721759", 
          "https://doi.org/10.1038/44565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052721759", 
          "https://doi.org/10.1038/44565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.992799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061162832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.52985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/79.974727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061232100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2003.819189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2003.820314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2004.839806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2006.888466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2007.898443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470845899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470845899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661095"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "Hyperspectral unmixing, as a blind source separation (BSS) problem, has been intensively studied from independence aspect in the last few years. However, independent component analysis (ICA) can not totally unmix all the materials out because the sources (abundance fractions) are not statistically independent. In this paper a complexity constrained nonnegative matrix factorization (CCNMF) for simultaneously recovering both constituent spectra and correspondent abundances is proposed. Three important facts are exploited: First, the spectral data are nonnegative; second, the variation of the material spectra and abundance images is smooth in time and space respectively; third, in most cases, both of the material spectra and abundances are localized. Experimentations on real data are provided to illustrate the algorithm\u2019s performance.", 
    "editor": [
      {
        "familyName": "Davies", 
        "givenName": "Mike E.", 
        "type": "Person"
      }, 
      {
        "familyName": "James", 
        "givenName": "Christopher J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Abdallah", 
        "givenName": "Samer A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Plumbley", 
        "givenName": "Mark D", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74494-8_34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74493-1", 
        "978-3-540-74494-8"
      ], 
      "name": "Independent Component Analysis and Signal Separation", 
      "type": "Book"
    }, 
    "name": "A Complexity Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing", 
    "pagination": "268-276", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003107905"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74494-8_34"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ecdde65edcc20756c343347f73bfa23910e2d13ebad250df51f3ae84dd3e4c9"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74494-8_34", 
      "https://app.dimensions.ai/details/publication/pub.1003107905"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57864_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-74494-8_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74494-8_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74494-8_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74494-8_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74494-8_34'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74494-8_34 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N480e5a72939f4b27839fc860475bfad5
4 schema:citation sg:pub.10.1007/978-1-4419-9170-6
5 sg:pub.10.1038/44565
6 https://doi.org/10.1002/0470845899
7 https://doi.org/10.1016/j.laa.2005.06.025
8 https://doi.org/10.1109/36.992799
9 https://doi.org/10.1109/42.52985
10 https://doi.org/10.1109/79.974727
11 https://doi.org/10.1109/tgrs.2003.819189
12 https://doi.org/10.1109/tgrs.2003.820314
13 https://doi.org/10.1109/tgrs.2004.839806
14 https://doi.org/10.1109/tgrs.2006.888466
15 https://doi.org/10.1109/tgrs.2007.898443
16 https://doi.org/10.1109/tpami.2006.60
17 https://doi.org/10.1117/12.179107
18 https://doi.org/10.1162/089976601750265009
19 schema:datePublished 2007
20 schema:datePublishedReg 2007-01-01
21 schema:description Hyperspectral unmixing, as a blind source separation (BSS) problem, has been intensively studied from independence aspect in the last few years. However, independent component analysis (ICA) can not totally unmix all the materials out because the sources (abundance fractions) are not statistically independent. In this paper a complexity constrained nonnegative matrix factorization (CCNMF) for simultaneously recovering both constituent spectra and correspondent abundances is proposed. Three important facts are exploited: First, the spectral data are nonnegative; second, the variation of the material spectra and abundance images is smooth in time and space respectively; third, in most cases, both of the material spectra and abundances are localized. Experimentations on real data are provided to illustrate the algorithm’s performance.
22 schema:editor N899e8cb9af804aa190a27f2f0db46d11
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2b816ca530494cbc9a3ad8d74433e98b
27 schema:name A Complexity Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing
28 schema:pagination 268-276
29 schema:productId N330f116f5b9445f2ada656e22db0a0dc
30 Ne2da1d0500a84516a3f7bad14b968ed1
31 Nec83c6b4d6f644d09cbd952e7580a172
32 schema:publisher N4ffa4b4733ad47ffaef86183b74da378
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003107905
34 https://doi.org/10.1007/978-3-540-74494-8_34
35 schema:sdDatePublished 2019-04-16T07:29
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Ne154684ffa934e348ede86b66791c479
38 schema:url https://link.springer.com/10.1007%2F978-3-540-74494-8_34
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N2aaf0fee1b9f40bd8af3ed4c4678b6ed schema:familyName Plumbley
43 schema:givenName Mark D
44 rdf:type schema:Person
45 N2b816ca530494cbc9a3ad8d74433e98b schema:isbn 978-3-540-74493-1
46 978-3-540-74494-8
47 schema:name Independent Component Analysis and Signal Separation
48 rdf:type schema:Book
49 N30ed312dbb614b83a703daa3684b1d9b schema:familyName James
50 schema:givenName Christopher J.
51 rdf:type schema:Person
52 N330f116f5b9445f2ada656e22db0a0dc schema:name readcube_id
53 schema:value 0ecdde65edcc20756c343347f73bfa23910e2d13ebad250df51f3ae84dd3e4c9
54 rdf:type schema:PropertyValue
55 N480e5a72939f4b27839fc860475bfad5 rdf:first sg:person.07774604370.25
56 rdf:rest N97b027c76a004defae5bd9c667e6ea0c
57 N4ffa4b4733ad47ffaef86183b74da378 schema:location Berlin, Heidelberg
58 schema:name Springer Berlin Heidelberg
59 rdf:type schema:Organisation
60 N6ba9fa3342c74115bfefab04478dcbb5 rdf:first N753650b01ffa4ef6aff0bf9685cab28a
61 rdf:rest N71ea15c7218f4022b5484e71475ad625
62 N71ea15c7218f4022b5484e71475ad625 rdf:first N2aaf0fee1b9f40bd8af3ed4c4678b6ed
63 rdf:rest rdf:nil
64 N753650b01ffa4ef6aff0bf9685cab28a schema:familyName Abdallah
65 schema:givenName Samer A.
66 rdf:type schema:Person
67 N899e8cb9af804aa190a27f2f0db46d11 rdf:first N9356869b2de94d66b8541a87c7abaccb
68 rdf:rest Nec504c8cc6a3493581fc0f66ffd31838
69 N9356869b2de94d66b8541a87c7abaccb schema:familyName Davies
70 schema:givenName Mike E.
71 rdf:type schema:Person
72 N97b027c76a004defae5bd9c667e6ea0c rdf:first sg:person.07505760577.87
73 rdf:rest rdf:nil
74 Ne154684ffa934e348ede86b66791c479 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Ne2da1d0500a84516a3f7bad14b968ed1 schema:name dimensions_id
77 schema:value pub.1003107905
78 rdf:type schema:PropertyValue
79 Nec504c8cc6a3493581fc0f66ffd31838 rdf:first N30ed312dbb614b83a703daa3684b1d9b
80 rdf:rest N6ba9fa3342c74115bfefab04478dcbb5
81 Nec83c6b4d6f644d09cbd952e7580a172 schema:name doi
82 schema:value 10.1007/978-3-540-74494-8_34
83 rdf:type schema:PropertyValue
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
88 schema:name Materials Engineering
89 rdf:type schema:DefinedTerm
90 sg:person.07505760577.87 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
91 schema:familyName Qian
92 schema:givenName Yuntao
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505760577.87
94 rdf:type schema:Person
95 sg:person.07774604370.25 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
96 schema:familyName Jia
97 schema:givenName Sen
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774604370.25
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4419-9170-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004126947
101 https://doi.org/10.1007/978-1-4419-9170-6
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/44565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052721759
104 https://doi.org/10.1038/44565
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/0470845899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661095
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.laa.2005.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035495179
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/36.992799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061162832
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/42.52985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170452
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/79.974727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232100
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tgrs.2003.819189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609049
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tgrs.2003.820314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609065
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tgrs.2004.839806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609327
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tgrs.2006.888466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610053
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tgrs.2007.898443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610234
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/tpami.2006.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743107
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1117/12.179107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004828680
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1162/089976601750265009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009285071
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
133 schema:name College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...