Approximation Algorithms for 2-Source Minimum Routing Cost k-Tree Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Yen Hung Chen , Gwo-Liang Liao , Chuan Yi Tang

ABSTRACT

In this paper, we investigate some k-tree problems of graphs with given two sources. Let G = (V,E,w) be an undirected graph with nonnegative edge lengths and two sources s 1, s 2 ∈ V. The first problem is the 2-source minimum routing cost k -tree (2-kMRCT) problem, in which we want to find a tree T = (V T ,E T ) spanning k vertices such that the total distance from all vertex in V T to the two sources is minimized, i.e., we want to minimize \(\sum_{v\in V_T} \{d_T(s_1,v)+ d_T(s_2,v)\}\), in which d T (s,v) is the length of the path between s and v on T. The second problem is the 2-source bottleneck source routing cost k -tree (2-kBSRT) problem, in which the objective function is the maximum total distance from any source to all vertices in V T , i.e., \(\max_{s\in (s_1,s_2)} \{ \sum_{v\in V_T} d_T(s,v) \}\). The third problem is the 2-source bottleneck vertex routing cost k -tree (2-kBVRT) problem, in which the objective function is the maximum total distance from any vertex in V T to the two sources , i.e., \(\max_{v\in V_T}\left\{ d_T(s_1,v)+d_T(s_2,v) \right\}\). In this paper, we present polynomial time approximation schemes (PTASs) for the 2-kMRCT and 2-kBVRT problems. For the 2-kBSRT problem, we give a (2 + ε)-approximation algorithm for any ε> 0. More... »

PAGES

520-533

References to SciGraph publications

  • 2004. Approximation Algorithms for k-Source Bottleneck Routing Cost Spanning Tree Problems in COMPUTATIONAL SCIENCE AND ITS APPLICATIONS – ICCSA 2004
  • Book

    TITLE

    Computational Science and Its Applications – ICCSA 2007

    ISBN

    978-3-540-74482-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_45

    DOI

    http://dx.doi.org/10.1007/978-3-540-74484-9_45

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002410248


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Taitung University", 
              "id": "https://www.grid.ac/institutes/grid.412088.7", 
              "name": [
                "Department of Information Science and Management Systems, National Taitung University, 684, Sec.1, Chunghua Rd., Taitung 950, Taiwan, R.O.C."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Yen Hung", 
            "id": "sg:person.01347725471.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347725471.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Taitung University", 
              "id": "https://www.grid.ac/institutes/grid.412088.7", 
              "name": [
                "Department of Information Science and Management Systems, National Taitung University, 684, Sec.1, Chunghua Rd., Taitung 950, Taiwan, R.O.C."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liao", 
            "givenName": "Gwo-Liang", 
            "id": "sg:person.016165364352.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016165364352.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Tsing Hua University", 
              "id": "https://www.grid.ac/institutes/grid.38348.34", 
              "name": [
                "Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Chuan Yi", 
            "id": "sg:person.01312526135.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0196-6774(02)00205-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006134156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0196-6774(02)00205-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006134156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/net.3230080402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007364680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-218x(99)00212-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016493109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jcss.1997.1542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019869761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dam.2003.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025762847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/net.20103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035891635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/net.20103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035891635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0020-0190(98)00010-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037469482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-218x(02)00420-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037542509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-218x(02)00420-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037542509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24767-8_37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048075102", 
              "https://doi.org/10.1007/978-3-540-24767-8_37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24767-8_37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048075102", 
              "https://doi.org/10.1007/978-3-540-24767-8_37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnet.2002.803917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061714323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0203015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062841229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s009753979732253x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0895480194266331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062882954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219265900000056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062991998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sfcs.1996.548489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095295328"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007", 
        "datePublishedReg": "2007-01-01", 
        "description": "In this paper, we investigate some k-tree problems of graphs with given two sources. Let G\u2009=\u2009(V,E,w) be an undirected graph with nonnegative edge lengths and two sources s 1, s 2\u2009\u2208\u2009V. The first problem is the 2-source minimum routing cost k -tree (2-kMRCT) problem, in which we want to find a tree T\u2009=\u2009(V T ,E T ) spanning k vertices such that the total distance from all vertex in V T to the two sources is minimized, i.e., we want to minimize \\(\\sum_{v\\in V_T} \\{d_T(s_1,v)+ d_T(s_2,v)\\}\\), in which d T (s,v) is the length of the path between s and v on T. The second problem is the 2-source bottleneck source routing cost k -tree (2-kBSRT) problem, in which the objective function is the maximum total distance from any source to all vertices in V T , i.e., \\(\\max_{s\\in (s_1,s_2)} \\{ \\sum_{v\\in V_T} d_T(s,v) \\}\\). The third problem is the 2-source bottleneck vertex routing cost k -tree (2-kBVRT) problem, in which the objective function is the maximum total distance from any vertex in V T to the two sources , i.e., \\(\\max_{v\\in V_T}\\left\\{ d_T(s_1,v)+d_T(s_2,v) \\right\\}\\). In this paper, we present polynomial time approximation schemes (PTASs) for the 2-kMRCT and 2-kBVRT problems. For the 2-kBSRT problem, we give a (2\u2009+\u2009\u03b5)-approximation algorithm for any \u03b5>\u20090.", 
        "editor": [
          {
            "familyName": "Gervasi", 
            "givenName": "Osvaldo", 
            "type": "Person"
          }, 
          {
            "familyName": "Gavrilova", 
            "givenName": "Marina L.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-74484-9_45", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-74482-5"
          ], 
          "name": "Computational Science and Its Applications \u2013 ICCSA 2007", 
          "type": "Book"
        }, 
        "name": "Approximation Algorithms for 2-Source Minimum Routing Cost k-Tree Problems", 
        "pagination": "520-533", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-74484-9_45"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0b79a2e693c62bd1e1abf779fbc761662ce5d133571d52042df7631a77dbb3c2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002410248"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-74484-9_45", 
          "https://app.dimensions.ai/details/publication/pub.1002410248"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T15:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000552.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-540-74484-9_45"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_45'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_45'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_45'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_45'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-74484-9_45 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N10f9224a5e4840f78e8cfb2f4a7f2667
    4 schema:citation sg:pub.10.1007/978-3-540-24767-8_37
    5 https://doi.org/10.1002/net.20103
    6 https://doi.org/10.1002/net.3230080402
    7 https://doi.org/10.1006/jcss.1997.1542
    8 https://doi.org/10.1016/j.dam.2003.10.002
    9 https://doi.org/10.1016/s0020-0190(98)00010-6
    10 https://doi.org/10.1016/s0166-218x(02)00420-1
    11 https://doi.org/10.1016/s0166-218x(99)00212-7
    12 https://doi.org/10.1016/s0196-6774(02)00205-5
    13 https://doi.org/10.1109/sfcs.1996.548489
    14 https://doi.org/10.1109/tnet.2002.803917
    15 https://doi.org/10.1137/0203015
    16 https://doi.org/10.1137/s009753979732253x
    17 https://doi.org/10.1137/s0895480194266331
    18 https://doi.org/10.1142/s0219265900000056
    19 schema:datePublished 2007
    20 schema:datePublishedReg 2007-01-01
    21 schema:description In this paper, we investigate some k-tree problems of graphs with given two sources. Let G = (V,E,w) be an undirected graph with nonnegative edge lengths and two sources s 1, s 2 ∈ V. The first problem is the 2-source minimum routing cost k -tree (2-kMRCT) problem, in which we want to find a tree T = (V T ,E T ) spanning k vertices such that the total distance from all vertex in V T to the two sources is minimized, i.e., we want to minimize \(\sum_{v\in V_T} \{d_T(s_1,v)+ d_T(s_2,v)\}\), in which d T (s,v) is the length of the path between s and v on T. The second problem is the 2-source bottleneck source routing cost k -tree (2-kBSRT) problem, in which the objective function is the maximum total distance from any source to all vertices in V T , i.e., \(\max_{s\in (s_1,s_2)} \{ \sum_{v\in V_T} d_T(s,v) \}\). The third problem is the 2-source bottleneck vertex routing cost k -tree (2-kBVRT) problem, in which the objective function is the maximum total distance from any vertex in V T to the two sources , i.e., \(\max_{v\in V_T}\left\{ d_T(s_1,v)+d_T(s_2,v) \right\}\). In this paper, we present polynomial time approximation schemes (PTASs) for the 2-kMRCT and 2-kBVRT problems. For the 2-kBSRT problem, we give a (2 + ε)-approximation algorithm for any ε> 0.
    22 schema:editor N0d5e3fea02f14772854ce9f384a4d7b4
    23 schema:genre chapter
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N875e48ef71634c55a0f8cd3c32480118
    27 schema:name Approximation Algorithms for 2-Source Minimum Routing Cost k-Tree Problems
    28 schema:pagination 520-533
    29 schema:productId N2e0512b7ce634e91ac45965b614c45ce
    30 N94bed50db3374ee3b423d2ecbf6c7466
    31 Naeff353cf6ce48b790ce2a514d6cb103
    32 schema:publisher Nf4b04a81791e499ba3e04afcf32308ce
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002410248
    34 https://doi.org/10.1007/978-3-540-74484-9_45
    35 schema:sdDatePublished 2019-04-15T15:53
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N6f896a46e3f94c918921b458c719ae36
    38 schema:url http://link.springer.com/10.1007/978-3-540-74484-9_45
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset chapters
    41 rdf:type schema:Chapter
    42 N0d5e3fea02f14772854ce9f384a4d7b4 rdf:first Ne700863ba87d4a87b5f03425fcb3c667
    43 rdf:rest Na2098c3a80f64ca8aa450bb022761eed
    44 N10f9224a5e4840f78e8cfb2f4a7f2667 rdf:first sg:person.01347725471.75
    45 rdf:rest N31b143010d58448a8e7c686b18bb1228
    46 N2e0512b7ce634e91ac45965b614c45ce schema:name doi
    47 schema:value 10.1007/978-3-540-74484-9_45
    48 rdf:type schema:PropertyValue
    49 N31b143010d58448a8e7c686b18bb1228 rdf:first sg:person.016165364352.48
    50 rdf:rest N9ad9a28512994f33a5f72513a87506e3
    51 N3e32015d6d7246c8b4ac20c1cc34fe4c schema:familyName Gavrilova
    52 schema:givenName Marina L.
    53 rdf:type schema:Person
    54 N6f896a46e3f94c918921b458c719ae36 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N875e48ef71634c55a0f8cd3c32480118 schema:isbn 978-3-540-74482-5
    57 schema:name Computational Science and Its Applications – ICCSA 2007
    58 rdf:type schema:Book
    59 N94bed50db3374ee3b423d2ecbf6c7466 schema:name readcube_id
    60 schema:value 0b79a2e693c62bd1e1abf779fbc761662ce5d133571d52042df7631a77dbb3c2
    61 rdf:type schema:PropertyValue
    62 N9ad9a28512994f33a5f72513a87506e3 rdf:first sg:person.01312526135.27
    63 rdf:rest rdf:nil
    64 Na2098c3a80f64ca8aa450bb022761eed rdf:first N3e32015d6d7246c8b4ac20c1cc34fe4c
    65 rdf:rest rdf:nil
    66 Naeff353cf6ce48b790ce2a514d6cb103 schema:name dimensions_id
    67 schema:value pub.1002410248
    68 rdf:type schema:PropertyValue
    69 Ne700863ba87d4a87b5f03425fcb3c667 schema:familyName Gervasi
    70 schema:givenName Osvaldo
    71 rdf:type schema:Person
    72 Nf4b04a81791e499ba3e04afcf32308ce schema:location Berlin, Heidelberg
    73 schema:name Springer Berlin Heidelberg
    74 rdf:type schema:Organisation
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Computation Theory and Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:person.01312526135.27 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
    82 schema:familyName Tang
    83 schema:givenName Chuan Yi
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
    85 rdf:type schema:Person
    86 sg:person.01347725471.75 schema:affiliation https://www.grid.ac/institutes/grid.412088.7
    87 schema:familyName Chen
    88 schema:givenName Yen Hung
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347725471.75
    90 rdf:type schema:Person
    91 sg:person.016165364352.48 schema:affiliation https://www.grid.ac/institutes/grid.412088.7
    92 schema:familyName Liao
    93 schema:givenName Gwo-Liang
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016165364352.48
    95 rdf:type schema:Person
    96 sg:pub.10.1007/978-3-540-24767-8_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048075102
    97 https://doi.org/10.1007/978-3-540-24767-8_37
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1002/net.20103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891635
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1002/net.3230080402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007364680
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1006/jcss.1997.1542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019869761
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.dam.2003.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025762847
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/s0020-0190(98)00010-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037469482
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/s0166-218x(02)00420-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037542509
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/s0166-218x(99)00212-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016493109
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s0196-6774(02)00205-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006134156
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/sfcs.1996.548489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095295328
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1109/tnet.2002.803917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714323
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1137/0203015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841229
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1137/s009753979732253x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880186
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1137/s0895480194266331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882954
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1142/s0219265900000056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062991998
    126 rdf:type schema:CreativeWork
    127 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
    128 schema:name Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C.
    129 rdf:type schema:Organization
    130 https://www.grid.ac/institutes/grid.412088.7 schema:alternateName National Taitung University
    131 schema:name Department of Information Science and Management Systems, National Taitung University, 684, Sec.1, Chunghua Rd., Taitung 950, Taiwan, R.O.C.
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...