Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

I. Valuev , A. Deinega , A. Knizhnik , B. Potapkin

ABSTRACT

In the present work we propose a strategy for developing reusable multi-model simulation library for solving Finite-Difference Time-Domain (FDTD) problem for Maxwell’s equations. The described EMTL (Electromagnetic Template Library) architecture is based on the selection of a small number of primitive low-level physical and numerical concepts which are used as parameters and building blocks for higher-level algorithms and structures. In the present work we demonstrate that a large set of FDTD techniques may be formulated using the same primitives. The basic concept for this representation is a discretized field contour entering the integral form of Maxwell’s equations. We also describe the proposed architecture in terms of FDTD C++ template class library and discuss the performance and the usage of this library for various FDTD-based simulations. More... »

PAGES

213-226

Book

TITLE

Computational Science and Its Applications – ICCSA 2007

ISBN

978-3-540-74482-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_19

DOI

http://dx.doi.org/10.1007/978-3-540-74484-9_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046209178


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow, 125412, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valuev", 
        "givenName": "I.", 
        "id": "sg:person.0611147461.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611147461.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "KINTECH Kinetic Technologies, Kurchatov Sq. 1, Moscow, 123182, Email: info@kintech.ru, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deinega", 
        "givenName": "A.", 
        "id": "sg:person.0740567577.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740567577.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "KINTECH Kinetic Technologies, Kurchatov Sq. 1, Moscow, 123182, Email: info@kintech.ru, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knizhnik", 
        "givenName": "A.", 
        "id": "sg:person.016047177775.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016047177775.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "KINTECH Kinetic Technologies, Kurchatov Sq. 1, Moscow, 123182, Email: info@kintech.ru, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potapkin", 
        "givenName": "B.", 
        "id": "sg:person.01337103144.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337103144.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00464-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026123084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00464-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026123084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.026304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051377472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.026304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051377472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.114.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.114.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/75.622536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061221243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.138836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061232304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.1966.1138693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061490079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/temc.1982.304054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061601628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.002972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224293"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "In the present work we propose a strategy for developing reusable multi-model simulation library for solving Finite-Difference Time-Domain (FDTD) problem for Maxwell\u2019s equations. The described EMTL (Electromagnetic Template Library) architecture is based on the selection of a small number of primitive low-level physical and numerical concepts which are used as parameters and building blocks for higher-level algorithms and structures. In the present work we demonstrate that a large set of FDTD techniques may be formulated using the same primitives. The basic concept for this representation is a discretized field contour entering the integral form of Maxwell\u2019s equations. We also describe the proposed architecture in terms of FDTD C++ template class library and discuss the performance and the usage of this library for various FDTD-based simulations.", 
    "editor": [
      {
        "familyName": "Gervasi", 
        "givenName": "Osvaldo", 
        "type": "Person"
      }, 
      {
        "familyName": "Gavrilova", 
        "givenName": "Marina L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74484-9_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74482-5"
      ], 
      "name": "Computational Science and Its Applications \u2013 ICCSA 2007", 
      "type": "Book"
    }, 
    "name": "Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming", 
    "pagination": "213-226", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74484-9_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dc1df7ac2c51fd2e286f50e809f7d7192953526bfb7e0215831ef37be22149d3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046209178"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74484-9_19", 
      "https://app.dimensions.ai/details/publication/pub.1046209178"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99818_00000003.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-74484-9_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74484-9_19'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74484-9_19 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N704d73ff7af34f7589af254c01502839
4 schema:citation https://doi.org/10.1016/s1359-6454(03)00464-6
5 https://doi.org/10.1103/physrev.114.104
6 https://doi.org/10.1103/physreve.68.026304
7 https://doi.org/10.1109/75.622536
8 https://doi.org/10.1109/8.138836
9 https://doi.org/10.1109/tap.1966.1138693
10 https://doi.org/10.1109/temc.1982.304054
11 https://doi.org/10.1364/ol.31.002972
12 schema:datePublished 2007
13 schema:datePublishedReg 2007-01-01
14 schema:description In the present work we propose a strategy for developing reusable multi-model simulation library for solving Finite-Difference Time-Domain (FDTD) problem for Maxwell’s equations. The described EMTL (Electromagnetic Template Library) architecture is based on the selection of a small number of primitive low-level physical and numerical concepts which are used as parameters and building blocks for higher-level algorithms and structures. In the present work we demonstrate that a large set of FDTD techniques may be formulated using the same primitives. The basic concept for this representation is a discretized field contour entering the integral form of Maxwell’s equations. We also describe the proposed architecture in terms of FDTD C++ template class library and discuss the performance and the usage of this library for various FDTD-based simulations.
15 schema:editor N87ed047ad3974974a11ed111c42949b2
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N9d21fbabe6a8445185d7066eb45ecdf7
20 schema:name Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming
21 schema:pagination 213-226
22 schema:productId N34aeadfb52df442d9de86c51dd24c8cf
23 N666f22ee63054eb1b5bf36d0b100b52b
24 N9a4e2e6b29fb4bfab39753fa61154ac6
25 schema:publisher Nb994e16bb6664196b8531a0046f810a5
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046209178
27 https://doi.org/10.1007/978-3-540-74484-9_19
28 schema:sdDatePublished 2019-04-16T05:33
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N232fdd51a4994901abe1c3b8a5f96416
31 schema:url https://link.springer.com/10.1007%2F978-3-540-74484-9_19
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N232fdd51a4994901abe1c3b8a5f96416 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N34aeadfb52df442d9de86c51dd24c8cf schema:name readcube_id
38 schema:value dc1df7ac2c51fd2e286f50e809f7d7192953526bfb7e0215831ef37be22149d3
39 rdf:type schema:PropertyValue
40 N3c223b796a0142e3b0c10fcb0eb50b46 schema:familyName Gervasi
41 schema:givenName Osvaldo
42 rdf:type schema:Person
43 N666f22ee63054eb1b5bf36d0b100b52b schema:name doi
44 schema:value 10.1007/978-3-540-74484-9_19
45 rdf:type schema:PropertyValue
46 N704d73ff7af34f7589af254c01502839 rdf:first sg:person.0611147461.16
47 rdf:rest Na830486375d444e097defba95ad0b432
48 N87ed047ad3974974a11ed111c42949b2 rdf:first N3c223b796a0142e3b0c10fcb0eb50b46
49 rdf:rest N97480224f14d4fe38e0b58ff14a4cf26
50 N97480224f14d4fe38e0b58ff14a4cf26 rdf:first Nafba51263f5d4f299355568d5c283ab8
51 rdf:rest rdf:nil
52 N9a4e2e6b29fb4bfab39753fa61154ac6 schema:name dimensions_id
53 schema:value pub.1046209178
54 rdf:type schema:PropertyValue
55 N9d21fbabe6a8445185d7066eb45ecdf7 schema:isbn 978-3-540-74482-5
56 schema:name Computational Science and Its Applications – ICCSA 2007
57 rdf:type schema:Book
58 Na830486375d444e097defba95ad0b432 rdf:first sg:person.0740567577.31
59 rdf:rest Ne49da42aadde4630801f7838f7b57723
60 Nafba51263f5d4f299355568d5c283ab8 schema:familyName Gavrilova
61 schema:givenName Marina L.
62 rdf:type schema:Person
63 Nb994e16bb6664196b8531a0046f810a5 schema:location Berlin, Heidelberg
64 schema:name Springer Berlin Heidelberg
65 rdf:type schema:Organisation
66 Ncc1f720523b04125b3a3a154714eb61e schema:name KINTECH Kinetic Technologies, Kurchatov Sq. 1, Moscow, 123182, Email: info@kintech.ru, Russia
67 rdf:type schema:Organization
68 Nd972cc1b9ba94c12acb189df5f113b92 schema:name KINTECH Kinetic Technologies, Kurchatov Sq. 1, Moscow, 123182, Email: info@kintech.ru, Russia
69 rdf:type schema:Organization
70 Ndb8870dd0a4d4f7b8d67835a7f611397 rdf:first sg:person.01337103144.40
71 rdf:rest rdf:nil
72 Ne49da42aadde4630801f7838f7b57723 rdf:first sg:person.016047177775.08
73 rdf:rest Ndb8870dd0a4d4f7b8d67835a7f611397
74 Nec13fde0af614e3fba18ee58309d129c schema:name KINTECH Kinetic Technologies, Kurchatov Sq. 1, Moscow, 123182, Email: info@kintech.ru, Russia
75 rdf:type schema:Organization
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:person.01337103144.40 schema:affiliation Nd972cc1b9ba94c12acb189df5f113b92
83 schema:familyName Potapkin
84 schema:givenName B.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337103144.40
86 rdf:type schema:Person
87 sg:person.016047177775.08 schema:affiliation Ncc1f720523b04125b3a3a154714eb61e
88 schema:familyName Knizhnik
89 schema:givenName A.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016047177775.08
91 rdf:type schema:Person
92 sg:person.0611147461.16 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
93 schema:familyName Valuev
94 schema:givenName I.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611147461.16
96 rdf:type schema:Person
97 sg:person.0740567577.31 schema:affiliation Nec13fde0af614e3fba18ee58309d129c
98 schema:familyName Deinega
99 schema:givenName A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740567577.31
101 rdf:type schema:Person
102 https://doi.org/10.1016/s1359-6454(03)00464-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026123084
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrev.114.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060421496
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physreve.68.026304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051377472
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/75.622536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061221243
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/8.138836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232304
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tap.1966.1138693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061490079
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/temc.1982.304054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061601628
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1364/ol.31.002972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224293
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.435259.c schema:alternateName Joint Institute for High Temperatures
119 schema:name Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow, 125412, Russia
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...