Numerical Simulation of a Molten Carbonate Fuel Cell by Partial Differential Algebraic Equations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008-01-01

AUTHORS

K. Chudej , M. Bauer , H. J. Pesch , K. Schittkowski

ABSTRACT

The dynamical behavior of a molten carbonate fuel cell (MCFC) can be modeled by systems of partial differential algebraic equations (PDEAs) based on physical and chemical laws. Mathematical models for identification and control are considered as valuable tools to increase the life time of the expensive MCFC power plants, especially to derive control strategies for avoiding high temperature gradients and hot spots. We present numerical simulation results for a load change of a new one-dimensional counterflow MCFC model consisting of 34 nonlinear partial and ordinary differential algebraic-equations (PDEAs) based on physical and chemical laws. The PDAE system is discretized by the method of lines (MOL) based on forward, backward, and central difference formulae, and the resulting large system of semi-explicit differential-algebraic equations is subsequently integrated by an implicit DAE solver. More... »

PAGES

57-70

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74238-8_6

DOI

http://dx.doi.org/10.1007/978-3-540-74238-8_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018822989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, 95440, Bayreuth", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, 95440, Bayreuth"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chudej", 
        "givenName": "K.", 
        "id": "sg:person.07503175407.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503175407.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, 95440, Bayreuth", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, 95440, Bayreuth"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, 95440, Bayreuth", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Lehrstuhl f\u00fcr Ingenieurmathematik, Universit\u00e4t Bayreuth, 95440, Bayreuth"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesch", 
        "givenName": "H. J.", 
        "id": "sg:person.014543723551.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fachgruppe Informatik, Universit\u00e4t Bayreuth, 95440, Bayreuth", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Fachgruppe Informatik, Universit\u00e4t Bayreuth, 95440, Bayreuth"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schittkowski", 
        "givenName": "K.", 
        "id": "sg:person.010661350241.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010661350241.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "The dynamical behavior of a molten carbonate fuel cell (MCFC) can be modeled by systems of partial differential algebraic equations (PDEAs) based on physical and chemical laws. Mathematical models for identification and control are considered as valuable tools to increase the life time of the expensive MCFC power plants, especially to derive control strategies for avoiding high temperature gradients and hot spots. We present numerical simulation results for a load change of a new one-dimensional counterflow MCFC model consisting of 34 nonlinear partial and ordinary differential algebraic-equations (PDEAs) based on physical and chemical laws. The PDAE system is discretized by the method of lines (MOL) based on forward, backward, and central difference formulae, and the resulting large system of semi-explicit differential-algebraic equations is subsequently integrated by an implicit DAE solver.", 
    "editor": [
      {
        "familyName": "Breitner", 
        "givenName": "Michael H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Denk", 
        "givenName": "Georg", 
        "type": "Person"
      }, 
      {
        "familyName": "Rentrop", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74238-8_6", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74237-1", 
        "978-3-540-74238-8"
      ], 
      "name": "From Nano to Space", 
      "type": "Book"
    }, 
    "keywords": [
      "partial differential algebraic equations", 
      "differential-algebraic equations", 
      "method of lines", 
      "algebraic equations", 
      "semi-explicit differential-algebraic equations", 
      "central difference formula", 
      "PDAE system", 
      "DAE solvers", 
      "dynamical behavior", 
      "mathematical model", 
      "difference formula", 
      "numerical simulation results", 
      "large systems", 
      "equations", 
      "chemical laws", 
      "MCFC power plant", 
      "numerical simulations", 
      "MCFC model", 
      "simulation results", 
      "control strategy", 
      "temperature gradient", 
      "high temperature gradients", 
      "molten carbonate fuel cell", 
      "solver", 
      "law", 
      "load changes", 
      "model", 
      "carbonate fuel cell", 
      "formula", 
      "system", 
      "simulations", 
      "life time", 
      "power plants", 
      "gradient", 
      "valuable tool", 
      "tool", 
      "behavior", 
      "fuel cells", 
      "results", 
      "control", 
      "lines", 
      "hot spots", 
      "time", 
      "identification", 
      "spots", 
      "strategies", 
      "changes", 
      "plants", 
      "cells", 
      "method"
    ], 
    "name": "Numerical Simulation of a Molten Carbonate Fuel Cell by Partial Differential Algebraic Equations", 
    "pagination": "57-70", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018822989"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74238-8_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74238-8_6", 
      "https://app.dimensions.ai/details/publication/pub.1018822989"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_372.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-74238-8_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74238-8_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74238-8_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74238-8_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74238-8_6'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      22 PREDICATES      75 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74238-8_6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 schema:author Nf25fcb5ee1ba4831b40e088deba5c3ac
5 schema:datePublished 2008-01-01
6 schema:datePublishedReg 2008-01-01
7 schema:description The dynamical behavior of a molten carbonate fuel cell (MCFC) can be modeled by systems of partial differential algebraic equations (PDEAs) based on physical and chemical laws. Mathematical models for identification and control are considered as valuable tools to increase the life time of the expensive MCFC power plants, especially to derive control strategies for avoiding high temperature gradients and hot spots. We present numerical simulation results for a load change of a new one-dimensional counterflow MCFC model consisting of 34 nonlinear partial and ordinary differential algebraic-equations (PDEAs) based on physical and chemical laws. The PDAE system is discretized by the method of lines (MOL) based on forward, backward, and central difference formulae, and the resulting large system of semi-explicit differential-algebraic equations is subsequently integrated by an implicit DAE solver.
8 schema:editor N8d099375904e4f7ca45ea3ab4fe2bdf8
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc5a0b1ef557f4d03b48b99e50a181b21
12 schema:keywords DAE solvers
13 MCFC model
14 MCFC power plant
15 PDAE system
16 algebraic equations
17 behavior
18 carbonate fuel cell
19 cells
20 central difference formula
21 changes
22 chemical laws
23 control
24 control strategy
25 difference formula
26 differential-algebraic equations
27 dynamical behavior
28 equations
29 formula
30 fuel cells
31 gradient
32 high temperature gradients
33 hot spots
34 identification
35 large systems
36 law
37 life time
38 lines
39 load changes
40 mathematical model
41 method
42 method of lines
43 model
44 molten carbonate fuel cell
45 numerical simulation results
46 numerical simulations
47 partial differential algebraic equations
48 plants
49 power plants
50 results
51 semi-explicit differential-algebraic equations
52 simulation results
53 simulations
54 solver
55 spots
56 strategies
57 system
58 temperature gradient
59 time
60 tool
61 valuable tool
62 schema:name Numerical Simulation of a Molten Carbonate Fuel Cell by Partial Differential Algebraic Equations
63 schema:pagination 57-70
64 schema:productId N0960caed4a04446188fdff53ba919396
65 Nfa91aee1f7dd4c24be37264dd982cee1
66 schema:publisher N5fe3aa5f075349918645d6fee44505f3
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018822989
68 https://doi.org/10.1007/978-3-540-74238-8_6
69 schema:sdDatePublished 2022-09-02T16:15
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N7729aab7f5884c7d99cfe1b9613e0c77
72 schema:url https://doi.org/10.1007/978-3-540-74238-8_6
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N0960caed4a04446188fdff53ba919396 schema:name dimensions_id
77 schema:value pub.1018822989
78 rdf:type schema:PropertyValue
79 N1a6ab7c49eca40118de848e2473d93ef schema:familyName Rentrop
80 schema:givenName Peter
81 rdf:type schema:Person
82 N4461d2dd12f4454c9476371527c84114 rdf:first N7d9852528c3842ce9d1a69b4b1a1f9e3
83 rdf:rest Nba8b529cda20437a8bb243ffd875e9e5
84 N52a4bca6eab341918570d35c1efe2cba schema:familyName Breitner
85 schema:givenName Michael H.
86 rdf:type schema:Person
87 N5fe3aa5f075349918645d6fee44505f3 schema:name Springer Nature
88 rdf:type schema:Organisation
89 N7729aab7f5884c7d99cfe1b9613e0c77 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N7d9852528c3842ce9d1a69b4b1a1f9e3 schema:familyName Denk
92 schema:givenName Georg
93 rdf:type schema:Person
94 N8d099375904e4f7ca45ea3ab4fe2bdf8 rdf:first N52a4bca6eab341918570d35c1efe2cba
95 rdf:rest N4461d2dd12f4454c9476371527c84114
96 N985c798abecb48a7a482d86871c1e40d rdf:first Nc30b49774b6d46b0a72a754ce33a6ff7
97 rdf:rest Ncf0736b0e87c43798e3dcb71112e313c
98 N9c66d88646a74f68bcc78616928aa8ce rdf:first sg:person.010661350241.43
99 rdf:rest rdf:nil
100 Nba8b529cda20437a8bb243ffd875e9e5 rdf:first N1a6ab7c49eca40118de848e2473d93ef
101 rdf:rest rdf:nil
102 Nc30b49774b6d46b0a72a754ce33a6ff7 schema:affiliation grid-institutes:None
103 schema:familyName Bauer
104 schema:givenName M.
105 rdf:type schema:Person
106 Nc5a0b1ef557f4d03b48b99e50a181b21 schema:isbn 978-3-540-74237-1
107 978-3-540-74238-8
108 schema:name From Nano to Space
109 rdf:type schema:Book
110 Ncf0736b0e87c43798e3dcb71112e313c rdf:first sg:person.014543723551.22
111 rdf:rest N9c66d88646a74f68bcc78616928aa8ce
112 Nf25fcb5ee1ba4831b40e088deba5c3ac rdf:first sg:person.07503175407.80
113 rdf:rest N985c798abecb48a7a482d86871c1e40d
114 Nfa91aee1f7dd4c24be37264dd982cee1 schema:name doi
115 schema:value 10.1007/978-3-540-74238-8_6
116 rdf:type schema:PropertyValue
117 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
118 schema:name Mathematical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
121 schema:name Pure Mathematics
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
124 schema:name Applied Mathematics
125 rdf:type schema:DefinedTerm
126 sg:person.010661350241.43 schema:affiliation grid-institutes:None
127 schema:familyName Schittkowski
128 schema:givenName K.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010661350241.43
130 rdf:type schema:Person
131 sg:person.014543723551.22 schema:affiliation grid-institutes:None
132 schema:familyName Pesch
133 schema:givenName H. J.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543723551.22
135 rdf:type schema:Person
136 sg:person.07503175407.80 schema:affiliation grid-institutes:None
137 schema:familyName Chudej
138 schema:givenName K.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503175407.80
140 rdf:type schema:Person
141 grid-institutes:None schema:alternateName Fachgruppe Informatik, Universität Bayreuth, 95440, Bayreuth
142 Lehrstuhl für Ingenieurmathematik, Universität Bayreuth, 95440, Bayreuth
143 schema:name Fachgruppe Informatik, Universität Bayreuth, 95440, Bayreuth
144 Lehrstuhl für Ingenieurmathematik, Universität Bayreuth, 95440, Bayreuth
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...