Congruence Between a Siegel and an Elliptic Modular Form View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Günter Harder

ABSTRACT

The winter semester 2002/2003 was the last semester before my retirement from the university. It also happened that I was the chairman of the Colloquium and the speaker foreseen for February 7 had to cancel his visit. At about the same time I found some numerical support for a very general conjecture relating divisibilities of certain special values of L-functions to congruences between modular forms. I have been thinking about this kind of relationship for many years, but I never had any idea how one could find experimental evidence. But in the early 2003 C. Faber and G. van der Geer had written a program that produced lists of eigenvalues of Hecke operators on some special Siegel modular forms. After a few days of suspense we could compare their list with my list of eigenvalues of elliptic modular forms and verify the congruence in our examples. More... »

PAGES

247-262

Book

TITLE

The 1-2-3 of Modular Forms

ISBN

978-3-540-74117-6
978-3-540-74119-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-74119-0_4

DOI

http://dx.doi.org/10.1007/978-3-540-74119-0_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008756952


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut, Universit\u00e4t Bonn, Beringstra\u00dfe 1, 53115, Bonn, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Mathematisches Institut, Universit\u00e4t Bonn, Beringstra\u00dfe 1, 53115, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harder", 
        "givenName": "G\u00fcnter", 
        "id": "sg:person.07760346052.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07760346052.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The winter semester 2002/2003 was the last semester before my retirement from the university. It also happened that I was the chairman of the Colloquium and the speaker foreseen for February 7 had to cancel his visit. At about the same time I found some numerical support for a very general conjecture relating divisibilities of certain special values of L-functions to congruences between modular forms. I have been thinking about this kind of relationship for many years, but I never had any idea how one could find experimental evidence. But in the early 2003 C. Faber and G. van der Geer had written a program that produced lists of eigenvalues of Hecke operators on some special Siegel modular forms. After a few days of suspense we could compare their list with my list of eigenvalues of elliptic modular forms and verify the congruence in our examples.", 
    "editor": [
      {
        "familyName": "Ranestad", 
        "givenName": "Kristian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-74119-0_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-74117-6", 
        "978-3-540-74119-0"
      ], 
      "name": "The 1-2-3 of Modular Forms", 
      "type": "Book"
    }, 
    "keywords": [
      "visits", 
      "last semester", 
      "years", 
      "experimental evidence", 
      "evidence", 
      "list", 
      "days", 
      "support", 
      "function", 
      "form", 
      "relationship", 
      "van der Geer", 
      "program", 
      "retirement", 
      "University", 
      "time I", 
      "values", 
      "congruence", 
      "Geer", 
      "list of eigenvalues", 
      "semester", 
      "chairman", 
      "special values", 
      "kind of relationship", 
      "kind", 
      "Faber", 
      "Siegel", 
      "Colloquium", 
      "foreseen", 
      "same time I", 
      "numerical support", 
      "idea", 
      "suspense", 
      "example", 
      "general conjecture", 
      "conjecture", 
      "divisibility", 
      "certain special values", 
      "modular forms", 
      "eigenvalues", 
      "Hecke operators", 
      "operators", 
      "Siegel modular forms", 
      "elliptic modular forms", 
      "winter semester 2002/2003", 
      "semester 2002/2003", 
      "speaker foreseen", 
      "der Geer", 
      "special Siegel modular forms", 
      "days of suspense"
    ], 
    "name": "Congruence Between a Siegel and an Elliptic Modular Form", 
    "pagination": "247-262", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008756952"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-74119-0_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-74119-0_4", 
      "https://app.dimensions.ai/details/publication/pub.1008756952"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_84.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-74119-0_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74119-0_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74119-0_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74119-0_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-74119-0_4'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-74119-0_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4f9045b776cb4180ad90118a308bdfd3
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description The winter semester 2002/2003 was the last semester before my retirement from the university. It also happened that I was the chairman of the Colloquium and the speaker foreseen for February 7 had to cancel his visit. At about the same time I found some numerical support for a very general conjecture relating divisibilities of certain special values of L-functions to congruences between modular forms. I have been thinking about this kind of relationship for many years, but I never had any idea how one could find experimental evidence. But in the early 2003 C. Faber and G. van der Geer had written a program that produced lists of eigenvalues of Hecke operators on some special Siegel modular forms. After a few days of suspense we could compare their list with my list of eigenvalues of elliptic modular forms and verify the congruence in our examples.
7 schema:editor Ne838f5ac24e347b99e7d4ed608a6f456
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Neef92de21a98488f9862798a73a9d442
12 schema:keywords Colloquium
13 Faber
14 Geer
15 Hecke operators
16 Siegel
17 Siegel modular forms
18 University
19 certain special values
20 chairman
21 congruence
22 conjecture
23 days
24 days of suspense
25 der Geer
26 divisibility
27 eigenvalues
28 elliptic modular forms
29 evidence
30 example
31 experimental evidence
32 foreseen
33 form
34 function
35 general conjecture
36 idea
37 kind
38 kind of relationship
39 last semester
40 list
41 list of eigenvalues
42 modular forms
43 numerical support
44 operators
45 program
46 relationship
47 retirement
48 same time I
49 semester
50 semester 2002/2003
51 speaker foreseen
52 special Siegel modular forms
53 special values
54 support
55 suspense
56 time I
57 values
58 van der Geer
59 visits
60 winter semester 2002/2003
61 years
62 schema:name Congruence Between a Siegel and an Elliptic Modular Form
63 schema:pagination 247-262
64 schema:productId N8eff0fe527c14ef7bfece28daae4d1c8
65 Nf206bdbc9c984e61a0641adaea109aeb
66 schema:publisher N7e60b369223d4349bc7d7bd849bb86f4
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008756952
68 https://doi.org/10.1007/978-3-540-74119-0_4
69 schema:sdDatePublished 2021-11-01T19:03
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Na7da539d5c1e43c1a9a7760eb824faf1
72 schema:url https://doi.org/10.1007/978-3-540-74119-0_4
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N22591939deac4939854fe0ad7d699586 schema:familyName Ranestad
77 schema:givenName Kristian
78 rdf:type schema:Person
79 N4f9045b776cb4180ad90118a308bdfd3 rdf:first sg:person.07760346052.42
80 rdf:rest rdf:nil
81 N7e60b369223d4349bc7d7bd849bb86f4 schema:name Springer Nature
82 rdf:type schema:Organisation
83 N8eff0fe527c14ef7bfece28daae4d1c8 schema:name dimensions_id
84 schema:value pub.1008756952
85 rdf:type schema:PropertyValue
86 Na7da539d5c1e43c1a9a7760eb824faf1 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Ne838f5ac24e347b99e7d4ed608a6f456 rdf:first N22591939deac4939854fe0ad7d699586
89 rdf:rest rdf:nil
90 Neef92de21a98488f9862798a73a9d442 schema:isbn 978-3-540-74117-6
91 978-3-540-74119-0
92 schema:name The 1-2-3 of Modular Forms
93 rdf:type schema:Book
94 Nf206bdbc9c984e61a0641adaea109aeb schema:name doi
95 schema:value 10.1007/978-3-540-74119-0_4
96 rdf:type schema:PropertyValue
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
101 schema:name Pure Mathematics
102 rdf:type schema:DefinedTerm
103 sg:person.07760346052.42 schema:affiliation grid-institutes:grid.10388.32
104 schema:familyName Harder
105 schema:givenName Günter
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07760346052.42
107 rdf:type schema:Person
108 grid-institutes:grid.10388.32 schema:alternateName Mathematisches Institut, Universität Bonn, Beringstraße 1, 53115, Bonn, Germany
109 schema:name Mathematisches Institut, Universität Bonn, Beringstraße 1, 53115, Bonn, Germany
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...