A Two Round Reporting Approach to Energy Efficient Interpolation of Sensor Fields View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Brian Harrington , Yan Huang

ABSTRACT

In-network aggregation has been proposed as one of the main mechanisms for reducing messaging cost (and thus energy) in prior sensor network database research. However, aggregated values of a sensor field are of limited use in natural science domains because many phenomena, e.g., temperature and soil moisture, are actually continuous and thus best represented as a continuous surface over the sensor fields. Energy efficient collection of readings from all sensors became a focus in recent research literature. In this paper, we address the problem of interpolating maps from sensor fields. We propose a spatial autocorrelation aware, energy efficient, and error bounded framework for interpolating maps from sensor fields. Our work is inspired by spatial autocorrelation based interpolation models commonly used in natural science domains, e.g., kriging, and brings together several innovations. We propose a two round reporting framework that utilizes spatial interpolation models to reduce communication costs and enforce error control. The framework employs a simple and low overhead in-network coordination among sensors for selecting reporting sensors so that the coordination overhead does not eclipse the communication savings. We conducted extensive experiments using data from a real-world sensor network deployment and a large Asian temperature dataset to show that the proposed framework significantly reduces messaging costs. More... »

PAGES

130-147

Book

TITLE

Advances in Spatial and Temporal Databases

ISBN

978-3-540-73539-7
978-3-540-73540-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-73540-3_8

DOI

http://dx.doi.org/10.1007/978-3-540-73540-3_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005215366


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Yahoo! Corporation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harrington", 
        "givenName": "Brian", 
        "id": "sg:person.014523373451.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523373451.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "University of North Texas"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Yan", 
        "id": "sg:person.01133501720.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133501720.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1007568.1007573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000314242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1052199.1052209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009268472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012088469-8.50053-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011902476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44498-x_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013425128", 
          "https://doi.org/10.1007/3-540-44498-x_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/872757.872817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013698295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comnet.2004.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020748608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/601858.601861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021452438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1007568.1007628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022815798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-49592-7_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023234947", 
          "https://doi.org/10.1007/978-0-387-49592-7_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-49592-7_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023234947", 
          "https://doi.org/10.1007/978-0-387-49592-7_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/345910.345953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025201758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1097064.1097072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027461744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1032222.1032248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030495400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1052199.1052201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035912243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036753273", 
          "https://doi.org/10.1007/978-3-662-03098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036753273", 
          "https://doi.org/10.1007/978-3-662-03098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1052199.1052206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037824394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/376284.375710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047699190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2006.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094305039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2005.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094380995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/percomw.2006.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094585714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdcsw.2002.1030829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095139382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcsa.2002.1017485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095552839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2004.1320018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095585800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1060289.1060303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098905901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/375663.375710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098954091"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "In-network aggregation has been proposed as one of the main mechanisms for reducing messaging cost (and thus energy) in prior sensor network database research. However, aggregated values of a sensor field are of limited use in natural science domains because many phenomena, e.g., temperature and soil moisture, are actually continuous and thus best represented as a continuous surface over the sensor fields. Energy efficient collection of readings from all sensors became a focus in recent research literature. In this paper, we address the problem of interpolating maps from sensor fields. We propose a spatial autocorrelation aware, energy efficient, and error bounded framework for interpolating maps from sensor fields. Our work is inspired by spatial autocorrelation based interpolation models commonly used in natural science domains, e.g., kriging, and brings together several innovations. We propose a two round reporting framework that utilizes spatial interpolation models to reduce communication costs and enforce error control. The framework employs a simple and low overhead in-network coordination among sensors for selecting reporting sensors so that the coordination overhead does not eclipse the communication savings. We conducted extensive experiments using data from a real-world sensor network deployment and a large Asian temperature dataset to show that the proposed framework significantly reduces messaging costs.", 
    "editor": [
      {
        "familyName": "Papadias", 
        "givenName": "Dimitris", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Donghui", 
        "type": "Person"
      }, 
      {
        "familyName": "Kollios", 
        "givenName": "George", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-73540-3_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-73539-7", 
        "978-3-540-73540-3"
      ], 
      "name": "Advances in Spatial and Temporal Databases", 
      "type": "Book"
    }, 
    "name": "A Two Round Reporting Approach to Energy Efficient Interpolation of Sensor Fields", 
    "pagination": "130-147", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-73540-3_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "18d8fc73a7becc10d91e699b019e65556401be9cfc1916388824af1596a3c179"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005215366"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-73540-3_8", 
      "https://app.dimensions.ai/details/publication/pub.1005215366"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64103_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-73540-3_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73540-3_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73540-3_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73540-3_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73540-3_8'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-73540-3_8 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N6f8521a70c094e039381e96a68bb0c91
4 schema:citation sg:pub.10.1007/3-540-44498-x_1
5 sg:pub.10.1007/978-0-387-49592-7_12
6 sg:pub.10.1007/978-3-662-03098-1
7 https://doi.org/10.1016/b978-012088469-8.50053-x
8 https://doi.org/10.1016/j.comnet.2004.03.007
9 https://doi.org/10.1109/icdcsw.2002.1030829
10 https://doi.org/10.1109/icde.2004.1320018
11 https://doi.org/10.1109/icde.2005.134
12 https://doi.org/10.1109/icde.2006.21
13 https://doi.org/10.1109/mcsa.2002.1017485
14 https://doi.org/10.1109/percomw.2006.139
15 https://doi.org/10.1145/1007568.1007573
16 https://doi.org/10.1145/1007568.1007628
17 https://doi.org/10.1145/1032222.1032248
18 https://doi.org/10.1145/1052199.1052201
19 https://doi.org/10.1145/1052199.1052206
20 https://doi.org/10.1145/1052199.1052209
21 https://doi.org/10.1145/1060289.1060303
22 https://doi.org/10.1145/1097064.1097072
23 https://doi.org/10.1145/345910.345953
24 https://doi.org/10.1145/375663.375710
25 https://doi.org/10.1145/376284.375710
26 https://doi.org/10.1145/601858.601861
27 https://doi.org/10.1145/872757.872817
28 schema:datePublished 2007
29 schema:datePublishedReg 2007-01-01
30 schema:description In-network aggregation has been proposed as one of the main mechanisms for reducing messaging cost (and thus energy) in prior sensor network database research. However, aggregated values of a sensor field are of limited use in natural science domains because many phenomena, e.g., temperature and soil moisture, are actually continuous and thus best represented as a continuous surface over the sensor fields. Energy efficient collection of readings from all sensors became a focus in recent research literature. In this paper, we address the problem of interpolating maps from sensor fields. We propose a spatial autocorrelation aware, energy efficient, and error bounded framework for interpolating maps from sensor fields. Our work is inspired by spatial autocorrelation based interpolation models commonly used in natural science domains, e.g., kriging, and brings together several innovations. We propose a two round reporting framework that utilizes spatial interpolation models to reduce communication costs and enforce error control. The framework employs a simple and low overhead in-network coordination among sensors for selecting reporting sensors so that the coordination overhead does not eclipse the communication savings. We conducted extensive experiments using data from a real-world sensor network deployment and a large Asian temperature dataset to show that the proposed framework significantly reduces messaging costs.
31 schema:editor N71ba87f05c694b5094801d0334ec3149
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf Na4f134edc0974236b0e0dfbf57d0ef43
36 schema:name A Two Round Reporting Approach to Energy Efficient Interpolation of Sensor Fields
37 schema:pagination 130-147
38 schema:productId N925e16725dd84e64a22040a7c45e7b61
39 Nb00959fb1ec8421e9d9dfd8e4d5a502e
40 Nf8d3df949f294c8d9f7717f4d14303af
41 schema:publisher N32b3dd4a15f24990af023b076c835ad1
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005215366
43 https://doi.org/10.1007/978-3-540-73540-3_8
44 schema:sdDatePublished 2019-04-16T05:26
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nd04cc87d610b43629624381c584f53f0
47 schema:url https://link.springer.com/10.1007%2F978-3-540-73540-3_8
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N152a0ba483f342359b50860fd83a8e21 rdf:first N1dfdf8a9055349289f7013fca864eb5c
52 rdf:rest N996535c661e7455c8e068f43662b37ac
53 N1dfdf8a9055349289f7013fca864eb5c schema:familyName Zhang
54 schema:givenName Donghui
55 rdf:type schema:Person
56 N32b3dd4a15f24990af023b076c835ad1 schema:location Berlin, Heidelberg
57 schema:name Springer Berlin Heidelberg
58 rdf:type schema:Organisation
59 N36f93b6a68f74620b894c2e1f8aefa5b schema:name Yahoo! Corporation
60 rdf:type schema:Organization
61 N4ff9077de31b47bd8b0d2b5a743c25e8 schema:familyName Papadias
62 schema:givenName Dimitris
63 rdf:type schema:Person
64 N63524017cdca48a284c15722c320d360 rdf:first sg:person.01133501720.03
65 rdf:rest rdf:nil
66 N6f8521a70c094e039381e96a68bb0c91 rdf:first sg:person.014523373451.15
67 rdf:rest N63524017cdca48a284c15722c320d360
68 N71ba87f05c694b5094801d0334ec3149 rdf:first N4ff9077de31b47bd8b0d2b5a743c25e8
69 rdf:rest N152a0ba483f342359b50860fd83a8e21
70 N925e16725dd84e64a22040a7c45e7b61 schema:name doi
71 schema:value 10.1007/978-3-540-73540-3_8
72 rdf:type schema:PropertyValue
73 N996535c661e7455c8e068f43662b37ac rdf:first Ne3ae8b3062b44cbaaedde91354a20bd8
74 rdf:rest rdf:nil
75 Na4f134edc0974236b0e0dfbf57d0ef43 schema:isbn 978-3-540-73539-7
76 978-3-540-73540-3
77 schema:name Advances in Spatial and Temporal Databases
78 rdf:type schema:Book
79 Nb00959fb1ec8421e9d9dfd8e4d5a502e schema:name dimensions_id
80 schema:value pub.1005215366
81 rdf:type schema:PropertyValue
82 Nd04cc87d610b43629624381c584f53f0 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Ne3ae8b3062b44cbaaedde91354a20bd8 schema:familyName Kollios
85 schema:givenName George
86 rdf:type schema:Person
87 Nf8d3df949f294c8d9f7717f4d14303af schema:name readcube_id
88 schema:value 18d8fc73a7becc10d91e699b019e65556401be9cfc1916388824af1596a3c179
89 rdf:type schema:PropertyValue
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information Systems
95 rdf:type schema:DefinedTerm
96 sg:person.01133501720.03 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
97 schema:familyName Huang
98 schema:givenName Yan
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133501720.03
100 rdf:type schema:Person
101 sg:person.014523373451.15 schema:affiliation N36f93b6a68f74620b894c2e1f8aefa5b
102 schema:familyName Harrington
103 schema:givenName Brian
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523373451.15
105 rdf:type schema:Person
106 sg:pub.10.1007/3-540-44498-x_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013425128
107 https://doi.org/10.1007/3-540-44498-x_1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-0-387-49592-7_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023234947
110 https://doi.org/10.1007/978-0-387-49592-7_12
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-662-03098-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036753273
113 https://doi.org/10.1007/978-3-662-03098-1
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/b978-012088469-8.50053-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011902476
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.comnet.2004.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020748608
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/icdcsw.2002.1030829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095139382
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/icde.2004.1320018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095585800
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/icde.2005.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094380995
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/icde.2006.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094305039
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/mcsa.2002.1017485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095552839
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/percomw.2006.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094585714
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/1007568.1007573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000314242
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/1007568.1007628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022815798
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/1032222.1032248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030495400
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/1052199.1052201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035912243
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/1052199.1052206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037824394
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/1052199.1052209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009268472
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/1060289.1060303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098905901
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/1097064.1097072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027461744
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/345910.345953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025201758
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/375663.375710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098954091
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/376284.375710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047699190
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1145/601858.601861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021452438
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1145/872757.872817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013698295
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
158 schema:name University of North Texas
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...