Mobile Robot Map Learning from Range Data in Dynamic Environments View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007-01-01

AUTHORS

Wolfram Burgard , Cyrill Stachniss , Dirk Hähnel

ABSTRACT

The problem of generating maps with mobile robots has received considerable attention over the past years. Most of the techniques developed so far have been designed for situations in which the environment is static during the mapping process. Dynamic objects, however, can lead to serious errors in the resulting maps such as spurious objects or misalignments due to localization errors. In this chapter, we consider the problem of creating maps with mobile robots in dynamic environments. We present two approaches to deal with non-static objects. The first approach interleaves mapping and localization with a probabilistic technique to identify spurious measurements. Measurements corresponding to dynamic objects are then filtered out during the registration process. Additionally, we present an approach that learns typical configurations of dynamic areas in the environment of a mobile robot. Our approach clusters local grid maps to identify the typical configurations. This knowledge is then used to improve the localization capabilities of a mobile vehicle acting in dynamic environments. In practical experiments carried out with a mobile robot in a typical office environment, we demonstrate the advantages of our approaches. More... »

PAGES

3-28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-73422-2_1

DOI

http://dx.doi.org/10.1007/978-3-540-73422-2_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049150618


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Freiburg, Dept. of Computer Science, 79110 Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Dept. of Computer Science, 79110 Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgard", 
        "givenName": "Wolfram", 
        "id": "sg:person.014270043511.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270043511.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich (ETH), 8092 Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "University of Freiburg, Dept. of Computer Science, 79110 Freiburg, Germany", 
            "Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich (ETH), 8092 Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stachniss", 
        "givenName": "Cyrill", 
        "id": "sg:person.015152144445.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intel Research Seattle, 1100 NE 45th Street, Seattle, WA 98105, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Freiburg, Dept. of Computer Science, 79110 Freiburg, Germany", 
            "Intel Research Seattle, 1100 NE 45th Street, Seattle, WA 98105, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00e4hnel", 
        "givenName": "Dirk", 
        "id": "sg:person.010304624663.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010304624663.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "The problem of generating maps with mobile robots has received considerable attention over the past years. Most of the techniques developed so far have been designed for situations in which the environment is static during the mapping process. Dynamic objects, however, can lead to serious errors in the resulting maps such as spurious objects or misalignments due to localization errors. In this chapter, we consider the problem of creating maps with mobile robots in dynamic environments. We present two approaches to deal with non-static objects. The first approach interleaves mapping and localization with a probabilistic technique to identify spurious measurements. Measurements corresponding to dynamic objects are then filtered out during the registration process. Additionally, we present an approach that learns typical configurations of dynamic areas in the environment of a mobile robot. Our approach clusters local grid maps to identify the typical configurations. This knowledge is then used to improve the localization capabilities of a mobile vehicle acting in dynamic environments. In practical experiments carried out with a mobile robot in a typical office environment, we demonstrate the advantages of our approaches.", 
    "editor": [
      {
        "familyName": "Laugier", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Chatila", 
        "givenName": "Raja", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-73422-2_1", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-73421-5", 
        "978-3-540-73422-2"
      ], 
      "name": "Autonomous Navigation in Dynamic Environments", 
      "type": "Book"
    }, 
    "keywords": [
      "mobile robot", 
      "dynamic environment", 
      "dynamic objects", 
      "local grid map", 
      "non-static objects", 
      "typical office environment", 
      "grid map", 
      "mobile vehicles", 
      "robot", 
      "spurious objects", 
      "range data", 
      "map learning", 
      "registration process", 
      "mapping process", 
      "localization error", 
      "localization capabilities", 
      "office environment", 
      "spurious measurements", 
      "probabilistic techniques", 
      "practical experiments", 
      "objects", 
      "first approach", 
      "environment", 
      "dynamic area", 
      "maps", 
      "typical configuration", 
      "learning", 
      "error", 
      "considerable attention", 
      "technique", 
      "capability", 
      "past year", 
      "vehicles", 
      "mapping", 
      "advantages", 
      "configuration", 
      "process", 
      "knowledge", 
      "situation", 
      "data", 
      "experiments", 
      "misalignment", 
      "localization", 
      "serious errors", 
      "attention", 
      "chapter", 
      "measurements", 
      "area", 
      "approach", 
      "problem", 
      "years"
    ], 
    "name": "Mobile Robot Map Learning from Range Data in Dynamic Environments", 
    "pagination": "3-28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049150618"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-73422-2_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-73422-2_1", 
      "https://app.dimensions.ai/details/publication/pub.1049150618"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_439.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-73422-2_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73422-2_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73422-2_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73422-2_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73422-2_1'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      22 PREDICATES      75 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-73422-2_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N9b2d27e5d5394086b9cddc9a08614aea
5 schema:datePublished 2007-01-01
6 schema:datePublishedReg 2007-01-01
7 schema:description The problem of generating maps with mobile robots has received considerable attention over the past years. Most of the techniques developed so far have been designed for situations in which the environment is static during the mapping process. Dynamic objects, however, can lead to serious errors in the resulting maps such as spurious objects or misalignments due to localization errors. In this chapter, we consider the problem of creating maps with mobile robots in dynamic environments. We present two approaches to deal with non-static objects. The first approach interleaves mapping and localization with a probabilistic technique to identify spurious measurements. Measurements corresponding to dynamic objects are then filtered out during the registration process. Additionally, we present an approach that learns typical configurations of dynamic areas in the environment of a mobile robot. Our approach clusters local grid maps to identify the typical configurations. This knowledge is then used to improve the localization capabilities of a mobile vehicle acting in dynamic environments. In practical experiments carried out with a mobile robot in a typical office environment, we demonstrate the advantages of our approaches.
8 schema:editor N4b0c39d3989e434b8d82f010bb7311fb
9 schema:genre chapter
10 schema:isAccessibleForFree true
11 schema:isPartOf Nf5dfcd505564444d881028e122c040f3
12 schema:keywords advantages
13 approach
14 area
15 attention
16 capability
17 chapter
18 configuration
19 considerable attention
20 data
21 dynamic area
22 dynamic environment
23 dynamic objects
24 environment
25 error
26 experiments
27 first approach
28 grid map
29 knowledge
30 learning
31 local grid map
32 localization
33 localization capabilities
34 localization error
35 map learning
36 mapping
37 mapping process
38 maps
39 measurements
40 misalignment
41 mobile robot
42 mobile vehicles
43 non-static objects
44 objects
45 office environment
46 past year
47 practical experiments
48 probabilistic techniques
49 problem
50 process
51 range data
52 registration process
53 robot
54 serious errors
55 situation
56 spurious measurements
57 spurious objects
58 technique
59 typical configuration
60 typical office environment
61 vehicles
62 years
63 schema:name Mobile Robot Map Learning from Range Data in Dynamic Environments
64 schema:pagination 3-28
65 schema:productId N4d976c157b1045bd84d0b8abb35db2d3
66 Nb99d7aaf08b44f5297883d37f9b098f6
67 schema:publisher Nd4b315b35b34443484867bd56035201b
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049150618
69 https://doi.org/10.1007/978-3-540-73422-2_1
70 schema:sdDatePublished 2022-11-24T21:18
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Na5c557a7dcf04991a22b81305e081183
73 schema:url https://doi.org/10.1007/978-3-540-73422-2_1
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N0439861a80b242c19158513e18bbf60f rdf:first sg:person.015152144445.37
78 rdf:rest N740c78137c4743918c5c6efb5e1823f9
79 N462b8cde540f474aaa5c7fbe995a5932 rdf:first N70c4e8dd8fb040af9051d42ea5c60c66
80 rdf:rest rdf:nil
81 N4b0c39d3989e434b8d82f010bb7311fb rdf:first Nfd5712596f694f7b880f34f5d0db55ec
82 rdf:rest N462b8cde540f474aaa5c7fbe995a5932
83 N4d976c157b1045bd84d0b8abb35db2d3 schema:name dimensions_id
84 schema:value pub.1049150618
85 rdf:type schema:PropertyValue
86 N70c4e8dd8fb040af9051d42ea5c60c66 schema:familyName Chatila
87 schema:givenName Raja
88 rdf:type schema:Person
89 N740c78137c4743918c5c6efb5e1823f9 rdf:first sg:person.010304624663.38
90 rdf:rest rdf:nil
91 N9b2d27e5d5394086b9cddc9a08614aea rdf:first sg:person.014270043511.25
92 rdf:rest N0439861a80b242c19158513e18bbf60f
93 Na5c557a7dcf04991a22b81305e081183 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nb99d7aaf08b44f5297883d37f9b098f6 schema:name doi
96 schema:value 10.1007/978-3-540-73422-2_1
97 rdf:type schema:PropertyValue
98 Nd4b315b35b34443484867bd56035201b schema:name Springer Nature
99 rdf:type schema:Organisation
100 Nf5dfcd505564444d881028e122c040f3 schema:isbn 978-3-540-73421-5
101 978-3-540-73422-2
102 schema:name Autonomous Navigation in Dynamic Environments
103 rdf:type schema:Book
104 Nfd5712596f694f7b880f34f5d0db55ec schema:familyName Laugier
105 schema:givenName Christian
106 rdf:type schema:Person
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information Systems
115 rdf:type schema:DefinedTerm
116 sg:person.010304624663.38 schema:affiliation grid-institutes:None
117 schema:familyName Hähnel
118 schema:givenName Dirk
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010304624663.38
120 rdf:type schema:Person
121 sg:person.014270043511.25 schema:affiliation grid-institutes:grid.5963.9
122 schema:familyName Burgard
123 schema:givenName Wolfram
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270043511.25
125 rdf:type schema:Person
126 sg:person.015152144445.37 schema:affiliation grid-institutes:grid.5801.c
127 schema:familyName Stachniss
128 schema:givenName Cyrill
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37
130 rdf:type schema:Person
131 grid-institutes:None schema:alternateName Intel Research Seattle, 1100 NE 45th Street, Seattle, WA 98105, USA
132 schema:name Intel Research Seattle, 1100 NE 45th Street, Seattle, WA 98105, USA
133 University of Freiburg, Dept. of Computer Science, 79110 Freiburg, Germany
134 rdf:type schema:Organization
135 grid-institutes:grid.5801.c schema:alternateName Eidgenössische Technische Hochschule Zürich (ETH), 8092 Zürich, Switzerland
136 schema:name Eidgenössische Technische Hochschule Zürich (ETH), 8092 Zürich, Switzerland
137 University of Freiburg, Dept. of Computer Science, 79110 Freiburg, Germany
138 rdf:type schema:Organization
139 grid-institutes:grid.5963.9 schema:alternateName University of Freiburg, Dept. of Computer Science, 79110 Freiburg, Germany
140 schema:name University of Freiburg, Dept. of Computer Science, 79110 Freiburg, Germany
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...