Possibilistic Clustering in Feature Space View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007-01-01

AUTHORS

Maurizio Filippone , Francesco Masulli , Stefano Rovetta

ABSTRACT

In this paper we propose the Possibilistic C-Means in Feature Space and the One-Cluster Possibilistic C-Means in Feature Space algorithms which are kernel methods for clustering in feature space based on the ossibilistic approach to clustering. The proposed algorithms retain the properties of the possibilistic clustering, working as density estimators in feature space and showing high robustness to outliers, and in addition are able to model densities in the data space in a non-parametric way. One-Cluster Possibilistic C-Means in Feature Space can be seen also as a generalization of One-Class SVM. More... »

PAGES

219-226

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27

DOI

http://dx.doi.org/10.1007/978-3-540-73400-0_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005491837


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "id": "sg:person.013052261502.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rovetta", 
        "givenName": "Stefano", 
        "id": "sg:person.015767137221.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "In this paper we propose the Possibilistic C-Means in Feature Space and the One-Cluster Possibilistic C-Means in Feature Space algorithms which are kernel methods for clustering in feature space based on the ossibilistic approach to clustering. The proposed algorithms retain the properties of the possibilistic clustering, working as density estimators in feature space and showing high robustness to outliers, and in addition are able to model densities in the data space in a non-parametric way. One-Cluster Possibilistic C-Means in Feature Space can be seen also as a generalization of One-Class SVM.", 
    "editor": [
      {
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "type": "Person"
      }, 
      {
        "familyName": "Mitra", 
        "givenName": "Sushmita", 
        "type": "Person"
      }, 
      {
        "familyName": "Pasi", 
        "givenName": "Gabriella", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-73400-0_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-73399-7", 
        "978-3-540-73400-0"
      ], 
      "name": "Applications of Fuzzy Sets Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "possibilistic clustering", 
      "Possibilistic C", 
      "feature space", 
      "non-parametric way", 
      "kernel method", 
      "space algorithm", 
      "density estimator", 
      "data space", 
      "space", 
      "high robustness", 
      "algorithm", 
      "estimator", 
      "generalization", 
      "clustering", 
      "outliers", 
      "robustness", 
      "means", 
      "properties", 
      "approach", 
      "density", 
      "one-class SVM", 
      "way", 
      "SVM", 
      "addition", 
      "method", 
      "paper"
    ], 
    "name": "Possibilistic Clustering in Feature Space", 
    "pagination": "219-226", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005491837"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-73400-0_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-73400-0_27", 
      "https://app.dimensions.ai/details/publication/pub.1005491837"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_398.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-73400-0_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      51 URIs      44 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-73400-0_27 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6c647b24dae44e15b30366f96d67d086
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description In this paper we propose the Possibilistic C-Means in Feature Space and the One-Cluster Possibilistic C-Means in Feature Space algorithms which are kernel methods for clustering in feature space based on the ossibilistic approach to clustering. The proposed algorithms retain the properties of the possibilistic clustering, working as density estimators in feature space and showing high robustness to outliers, and in addition are able to model densities in the data space in a non-parametric way. One-Cluster Possibilistic C-Means in Feature Space can be seen also as a generalization of One-Class SVM.
7 schema:editor Nec0988f28ef04b0e979c1a11efee78bc
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N6c792586530f4993a728cfdb9c0c72fe
12 schema:keywords Possibilistic C
13 SVM
14 addition
15 algorithm
16 approach
17 clustering
18 data space
19 density
20 density estimator
21 estimator
22 feature space
23 generalization
24 high robustness
25 kernel method
26 means
27 method
28 non-parametric way
29 one-class SVM
30 outliers
31 paper
32 possibilistic clustering
33 properties
34 robustness
35 space
36 space algorithm
37 way
38 schema:name Possibilistic Clustering in Feature Space
39 schema:pagination 219-226
40 schema:productId N6bffdc9f05ea4ac4b333b2cf3e05a6ad
41 Nfc66620dfe774cc8850a4f6b67057834
42 schema:publisher N6c707346c5f04ef09e0588c140369074
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005491837
44 https://doi.org/10.1007/978-3-540-73400-0_27
45 schema:sdDatePublished 2022-05-20T07:47
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nbed124feb2ca41d184543cf838661371
48 schema:url https://doi.org/10.1007/978-3-540-73400-0_27
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N2651c0e0d2d142248d6619501cb3ce59 schema:familyName Pasi
53 schema:givenName Gabriella
54 rdf:type schema:Person
55 N4aac82cca70848daa64ec13498da41c1 schema:familyName Mitra
56 schema:givenName Sushmita
57 rdf:type schema:Person
58 N5ef823a86245414c8290d4228bb06960 schema:familyName Masulli
59 schema:givenName Francesco
60 rdf:type schema:Person
61 N6bffdc9f05ea4ac4b333b2cf3e05a6ad schema:name dimensions_id
62 schema:value pub.1005491837
63 rdf:type schema:PropertyValue
64 N6c647b24dae44e15b30366f96d67d086 rdf:first sg:person.07706215665.03
65 rdf:rest Nb43e92a4198f43c08062502e1790cab8
66 N6c707346c5f04ef09e0588c140369074 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N6c792586530f4993a728cfdb9c0c72fe schema:isbn 978-3-540-73399-7
69 978-3-540-73400-0
70 schema:name Applications of Fuzzy Sets Theory
71 rdf:type schema:Book
72 N88f0b8e8a6244feabbd97b11ff91c2c7 rdf:first N4aac82cca70848daa64ec13498da41c1
73 rdf:rest Nef9ce99327b94f9d87b7cb346ac3b4dd
74 Nb43e92a4198f43c08062502e1790cab8 rdf:first sg:person.013052261502.67
75 rdf:rest Nf68263718f8140b7b568676a7bc1c4df
76 Nbed124feb2ca41d184543cf838661371 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nec0988f28ef04b0e979c1a11efee78bc rdf:first N5ef823a86245414c8290d4228bb06960
79 rdf:rest N88f0b8e8a6244feabbd97b11ff91c2c7
80 Nef9ce99327b94f9d87b7cb346ac3b4dd rdf:first N2651c0e0d2d142248d6619501cb3ce59
81 rdf:rest rdf:nil
82 Nf68263718f8140b7b568676a7bc1c4df rdf:first sg:person.015767137221.48
83 rdf:rest rdf:nil
84 Nfc66620dfe774cc8850a4f6b67057834 schema:name doi
85 schema:value 10.1007/978-3-540-73400-0_27
86 rdf:type schema:PropertyValue
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:person.013052261502.67 schema:affiliation grid-institutes:grid.5606.5
94 schema:familyName Masulli
95 schema:givenName Francesco
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67
97 rdf:type schema:Person
98 sg:person.015767137221.48 schema:affiliation grid-institutes:grid.5606.5
99 schema:familyName Rovetta
100 schema:givenName Stefano
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48
102 rdf:type schema:Person
103 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.5606.5
104 schema:familyName Filippone
105 schema:givenName Maurizio
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
107 rdf:type schema:Person
108 grid-institutes:grid.5606.5 schema:alternateName Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy
109 schema:name Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...