Possibilistic Clustering in Feature Space View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007-01-01

AUTHORS

Maurizio Filippone , Francesco Masulli , Stefano Rovetta

ABSTRACT

In this paper we propose the Possibilistic C-Means in Feature Space and the One-Cluster Possibilistic C-Means in Feature Space algorithms which are kernel methods for clustering in feature space based on the ossibilistic approach to clustering. The proposed algorithms retain the properties of the possibilistic clustering, working as density estimators in feature space and showing high robustness to outliers, and in addition are able to model densities in the data space in a non-parametric way. One-Cluster Possibilistic C-Means in Feature Space can be seen also as a generalization of One-Class SVM. More... »

PAGES

219-226

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27

DOI

http://dx.doi.org/10.1007/978-3-540-73400-0_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005491837


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "id": "sg:person.013052261502.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5606.5", 
          "name": [
            "Dipartimento di Informatica e Scienze dell\u2019Informazione, Universit\u00e0 di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rovetta", 
        "givenName": "Stefano", 
        "id": "sg:person.015767137221.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "In this paper we propose the Possibilistic C-Means in Feature Space and the One-Cluster Possibilistic C-Means in Feature Space algorithms which are kernel methods for clustering in feature space based on the ossibilistic approach to clustering. The proposed algorithms retain the properties of the possibilistic clustering, working as density estimators in feature space and showing high robustness to outliers, and in addition are able to model densities in the data space in a non-parametric way. One-Cluster Possibilistic C-Means in Feature Space can be seen also as a generalization of One-Class SVM.", 
    "editor": [
      {
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "type": "Person"
      }, 
      {
        "familyName": "Mitra", 
        "givenName": "Sushmita", 
        "type": "Person"
      }, 
      {
        "familyName": "Pasi", 
        "givenName": "Gabriella", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-73400-0_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-73399-7", 
        "978-3-540-73400-0"
      ], 
      "name": "Applications of Fuzzy Sets Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "feature space", 
      "Possibilistic C", 
      "possibilistic clustering", 
      "one-class SVM", 
      "data space", 
      "high robustness", 
      "non-parametric way", 
      "space algorithm", 
      "kernel methods", 
      "algorithm", 
      "clustering", 
      "SVM", 
      "density estimator", 
      "space", 
      "robustness", 
      "outliers", 
      "estimator", 
      "means", 
      "way", 
      "generalization", 
      "method", 
      "addition", 
      "properties", 
      "density", 
      "approach", 
      "paper", 
      "One-Cluster Possibilistic C", 
      "Feature Space algorithms", 
      "ossibilistic approach"
    ], 
    "name": "Possibilistic Clustering in Feature Space", 
    "pagination": "219-226", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005491837"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-73400-0_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-73400-0_27", 
      "https://app.dimensions.ai/details/publication/pub.1005491837"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_344.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-73400-0_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73400-0_27'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      54 URIs      47 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-73400-0_27 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3d9290e6fefe4324b2672e7499188841
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description In this paper we propose the Possibilistic C-Means in Feature Space and the One-Cluster Possibilistic C-Means in Feature Space algorithms which are kernel methods for clustering in feature space based on the ossibilistic approach to clustering. The proposed algorithms retain the properties of the possibilistic clustering, working as density estimators in feature space and showing high robustness to outliers, and in addition are able to model densities in the data space in a non-parametric way. One-Cluster Possibilistic C-Means in Feature Space can be seen also as a generalization of One-Class SVM.
7 schema:editor N9baee7bb6ed144188dc47b80ebab5fec
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N9724ca5f6b2d4a82b3b37e24886aab5b
12 schema:keywords Feature Space algorithms
13 One-Cluster Possibilistic C
14 Possibilistic C
15 SVM
16 addition
17 algorithm
18 approach
19 clustering
20 data space
21 density
22 density estimator
23 estimator
24 feature space
25 generalization
26 high robustness
27 kernel methods
28 means
29 method
30 non-parametric way
31 one-class SVM
32 ossibilistic approach
33 outliers
34 paper
35 possibilistic clustering
36 properties
37 robustness
38 space
39 space algorithm
40 way
41 schema:name Possibilistic Clustering in Feature Space
42 schema:pagination 219-226
43 schema:productId Nd8f5d6d2e5b94b1db7b5dc22a01f7cb5
44 Ne05b06705b1f4ba8aaffa3799f33de4e
45 schema:publisher Nf80dcfc0747b4a52a624bb1857e2d34e
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005491837
47 https://doi.org/10.1007/978-3-540-73400-0_27
48 schema:sdDatePublished 2022-01-01T19:19
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nbd4353816ad447bdb32a462b7e1a3354
51 schema:url https://doi.org/10.1007/978-3-540-73400-0_27
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N0597a4884c104668a88288e41ea4fc31 rdf:first sg:person.015767137221.48
56 rdf:rest rdf:nil
57 N1764543a394a492d990ed1ec34a46ef4 schema:familyName Masulli
58 schema:givenName Francesco
59 rdf:type schema:Person
60 N3d9290e6fefe4324b2672e7499188841 rdf:first sg:person.07706215665.03
61 rdf:rest Nd441df418637470b973e90293f367977
62 N6ddc69b60eed4a4a9395510f315de01f schema:familyName Pasi
63 schema:givenName Gabriella
64 rdf:type schema:Person
65 N8a97564bbc164ad69c3dce26731a56e3 schema:familyName Mitra
66 schema:givenName Sushmita
67 rdf:type schema:Person
68 N9724ca5f6b2d4a82b3b37e24886aab5b schema:isbn 978-3-540-73399-7
69 978-3-540-73400-0
70 schema:name Applications of Fuzzy Sets Theory
71 rdf:type schema:Book
72 N9baee7bb6ed144188dc47b80ebab5fec rdf:first N1764543a394a492d990ed1ec34a46ef4
73 rdf:rest Ndffa0190de5b408c89adbfe6da48e74d
74 Nbd4353816ad447bdb32a462b7e1a3354 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nc1a1e58d14f64e4595fd11164e6f5db0 rdf:first N6ddc69b60eed4a4a9395510f315de01f
77 rdf:rest rdf:nil
78 Nd441df418637470b973e90293f367977 rdf:first sg:person.013052261502.67
79 rdf:rest N0597a4884c104668a88288e41ea4fc31
80 Nd8f5d6d2e5b94b1db7b5dc22a01f7cb5 schema:name dimensions_id
81 schema:value pub.1005491837
82 rdf:type schema:PropertyValue
83 Ndffa0190de5b408c89adbfe6da48e74d rdf:first N8a97564bbc164ad69c3dce26731a56e3
84 rdf:rest Nc1a1e58d14f64e4595fd11164e6f5db0
85 Ne05b06705b1f4ba8aaffa3799f33de4e schema:name doi
86 schema:value 10.1007/978-3-540-73400-0_27
87 rdf:type schema:PropertyValue
88 Nf80dcfc0747b4a52a624bb1857e2d34e schema:name Springer Nature
89 rdf:type schema:Organisation
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:person.013052261502.67 schema:affiliation grid-institutes:grid.5606.5
97 schema:familyName Masulli
98 schema:givenName Francesco
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67
100 rdf:type schema:Person
101 sg:person.015767137221.48 schema:affiliation grid-institutes:grid.5606.5
102 schema:familyName Rovetta
103 schema:givenName Stefano
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48
105 rdf:type schema:Person
106 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.5606.5
107 schema:familyName Filippone
108 schema:givenName Maurizio
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
110 rdf:type schema:Person
111 grid-institutes:grid.5606.5 schema:alternateName Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy
112 schema:name Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, and CNISM, Via Dodecaneso 35, I-16146 Genova, Italy
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...