Application of Neural Networks to Atmospheric Pollutants Remote Sensing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Esteban García-Cuesta , Susana Briz , Isabel Fernández-Gómez , Antonio J. de Castro

ABSTRACT

Infrared remote sensing is an extended technique to measure ”in situ” atmospheric pollutant gas concentration. However, retrieval of concentrations from the absorbance spectra provided by technique is not a straightforward problem. In this work the use of artificial neural networks to analyze infrared absorbance spectra is proposed. A summary of classical retrieval codes is presented, highlighting advantages and important drawbacks that arise when these methods are applied to spectral analysis. As an alternative, a neural network retrieval approach is suggested, based on a multi layer perceptron. This approach has been focused to the retrieval of carbon monoxide concentration, because of the great environmental importance of this gas. Absorption overlapping of atmospheric gases such as carbon dioxide, nitrous oxide or water vapour is one the most important problem in the retrieval process. The training dataset has been generated with special care to overcome this aspect and guarantee a successful training phase. Results obtained from the ANN method are very promising. However, high retrieval errors have been found when ANN method is applied to experimental spectra. This fact reveals the need of a deep study of the instrumental parameters to be included in the model. More... »

PAGES

589-598

References to SciGraph publications

  • 2006. Spectral High Resolution Feature Selection for Retrieval of Combustion Temperature Profiles in INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING – IDEAL 2006
  • Book

    TITLE

    Nature Inspired Problem-Solving Methods in Knowledge Engineering

    ISBN

    978-3-540-73054-5
    978-3-540-73055-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-73055-2_61

    DOI

    http://dx.doi.org/10.1007/978-3-540-73055-2_61

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005193953


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "LIR - Laboratorio de Sensores y Teledetecci\u00f3n IR, Departamento de F\u00edsica, Universidad Carlos III de Madrid,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda-Cuesta", 
            "givenName": "Esteban", 
            "id": "sg:person.011164335231.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164335231.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Departamento de Ciencias, Universidad Europea de Madrid,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Briz", 
            "givenName": "Susana", 
            "id": "sg:person.011022613711.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011022613711.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "LIR - Laboratorio de Sensores y Teledetecci\u00f3n IR, Departamento de F\u00edsica, Universidad Carlos III de Madrid,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fern\u00e1ndez-G\u00f3mez", 
            "givenName": "Isabel", 
            "id": "sg:person.014120134727.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120134727.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "LIR - Laboratorio de Sensores y Teledetecci\u00f3n IR, Departamento de F\u00edsica, Universidad Carlos III de Madrid,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Castro", 
            "givenName": "Antonio J.", 
            "id": "sg:person.010775507153.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010775507153.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/11875581_91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007915074", 
              "https://doi.org/10.1007/11875581_91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11875581_91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007915074", 
              "https://doi.org/10.1007/11875581_91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jqsrt.2006.02.058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012919930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qj.49712656318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015736834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bbpc.19950990325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024251431"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007", 
        "datePublishedReg": "2007-01-01", 
        "description": "Infrared remote sensing is an extended technique to measure \u201din situ\u201d atmospheric pollutant gas concentration. However, retrieval of concentrations from the absorbance spectra provided by technique is not a straightforward problem. In this work the use of artificial neural networks to analyze infrared absorbance spectra is proposed. A summary of classical retrieval codes is presented, highlighting advantages and important drawbacks that arise when these methods are applied to spectral analysis. As an alternative, a neural network retrieval approach is suggested, based on a multi layer perceptron. This approach has been focused to the retrieval of carbon monoxide concentration, because of the great environmental importance of this gas. Absorption overlapping of atmospheric gases such as carbon dioxide, nitrous oxide or water vapour is one the most important problem in the retrieval process. The training dataset has been generated with special care to overcome this aspect and guarantee a successful training phase. Results obtained from the ANN method are very promising. However, high retrieval errors have been found when ANN method is applied to experimental spectra. This fact reveals the need of a deep study of the instrumental parameters to be included in the model.", 
        "editor": [
          {
            "familyName": "Mira", 
            "givenName": "Jos\u00e9", 
            "type": "Person"
          }, 
          {
            "familyName": "\u00c1lvarez", 
            "givenName": "Jos\u00e9 R.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-73055-2_61", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-73054-5", 
            "978-3-540-73055-2"
          ], 
          "name": "Nature Inspired Problem-Solving Methods in Knowledge Engineering", 
          "type": "Book"
        }, 
        "name": "Application of Neural Networks to Atmospheric Pollutants Remote Sensing", 
        "pagination": "589-598", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-73055-2_61"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "18bee9e41bc409a20f44c6f8795af711e301303b0f6e57708755eed4fe622ecf"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005193953"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-73055-2_61", 
          "https://app.dimensions.ai/details/publication/pub.1005193953"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T21:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000246.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-540-73055-2_61"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73055-2_61'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73055-2_61'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73055-2_61'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-73055-2_61'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-73055-2_61 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N7808943fff4f4759a9cb4ad3f79c70ea
    4 schema:citation sg:pub.10.1007/11875581_91
    5 https://doi.org/10.1002/bbpc.19950990325
    6 https://doi.org/10.1002/qj.49712656318
    7 https://doi.org/10.1016/j.jqsrt.2006.02.058
    8 schema:datePublished 2007
    9 schema:datePublishedReg 2007-01-01
    10 schema:description Infrared remote sensing is an extended technique to measure ”in situ” atmospheric pollutant gas concentration. However, retrieval of concentrations from the absorbance spectra provided by technique is not a straightforward problem. In this work the use of artificial neural networks to analyze infrared absorbance spectra is proposed. A summary of classical retrieval codes is presented, highlighting advantages and important drawbacks that arise when these methods are applied to spectral analysis. As an alternative, a neural network retrieval approach is suggested, based on a multi layer perceptron. This approach has been focused to the retrieval of carbon monoxide concentration, because of the great environmental importance of this gas. Absorption overlapping of atmospheric gases such as carbon dioxide, nitrous oxide or water vapour is one the most important problem in the retrieval process. The training dataset has been generated with special care to overcome this aspect and guarantee a successful training phase. Results obtained from the ANN method are very promising. However, high retrieval errors have been found when ANN method is applied to experimental spectra. This fact reveals the need of a deep study of the instrumental parameters to be included in the model.
    11 schema:editor N883216c33caf4725a84f9f7bbfca26ae
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N7659b4ddac5c44c9b5bf54be565449be
    16 schema:name Application of Neural Networks to Atmospheric Pollutants Remote Sensing
    17 schema:pagination 589-598
    18 schema:productId N2353c8bf9f4f4dbc8f106c244be9a383
    19 Na5f7c70d34974035b945868d44fc2faf
    20 Ncab3f18247b84c5f8e114b1fcca587e7
    21 schema:publisher Nf8d55bf2337c4cfd9483dca363a16062
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005193953
    23 https://doi.org/10.1007/978-3-540-73055-2_61
    24 schema:sdDatePublished 2019-04-15T21:56
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N2c2e55ccd130447f975ed34fd1c32415
    27 schema:url http://link.springer.com/10.1007/978-3-540-73055-2_61
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N1117d116174040d2836ba362f5f02ad1 rdf:first sg:person.014120134727.56
    32 rdf:rest N32574c58f3374f49900e1bf9e9877bfa
    33 N2353c8bf9f4f4dbc8f106c244be9a383 schema:name doi
    34 schema:value 10.1007/978-3-540-73055-2_61
    35 rdf:type schema:PropertyValue
    36 N2c2e55ccd130447f975ed34fd1c32415 schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 N32574c58f3374f49900e1bf9e9877bfa rdf:first sg:person.010775507153.73
    39 rdf:rest rdf:nil
    40 N7659b4ddac5c44c9b5bf54be565449be schema:isbn 978-3-540-73054-5
    41 978-3-540-73055-2
    42 schema:name Nature Inspired Problem-Solving Methods in Knowledge Engineering
    43 rdf:type schema:Book
    44 N7808943fff4f4759a9cb4ad3f79c70ea rdf:first sg:person.011164335231.10
    45 rdf:rest N8e206ba853d0426db35344227015ce0d
    46 N7acb0dc8c61b48229db733b0c5ca75de schema:name Departamento de Ciencias, Universidad Europea de Madrid,
    47 rdf:type schema:Organization
    48 N81735ea42a074ef4ad9cfac50f0cd629 schema:familyName Mira
    49 schema:givenName José
    50 rdf:type schema:Person
    51 N883216c33caf4725a84f9f7bbfca26ae rdf:first N81735ea42a074ef4ad9cfac50f0cd629
    52 rdf:rest Nf6d19c5e718841098769098520a9accb
    53 N8e206ba853d0426db35344227015ce0d rdf:first sg:person.011022613711.04
    54 rdf:rest N1117d116174040d2836ba362f5f02ad1
    55 Na3e802d0d9cb49e981e5b94611c1f1ed schema:name LIR - Laboratorio de Sensores y Teledetección IR, Departamento de Física, Universidad Carlos III de Madrid,
    56 rdf:type schema:Organization
    57 Na5f7c70d34974035b945868d44fc2faf schema:name dimensions_id
    58 schema:value pub.1005193953
    59 rdf:type schema:PropertyValue
    60 Nbc8c6504b9874dc2aec785cad5d83f1c schema:name LIR - Laboratorio de Sensores y Teledetección IR, Departamento de Física, Universidad Carlos III de Madrid,
    61 rdf:type schema:Organization
    62 Nc18f07d35bfb411ba11af544dd3b9e52 schema:name LIR - Laboratorio de Sensores y Teledetección IR, Departamento de Física, Universidad Carlos III de Madrid,
    63 rdf:type schema:Organization
    64 Ncab3f18247b84c5f8e114b1fcca587e7 schema:name readcube_id
    65 schema:value 18bee9e41bc409a20f44c6f8795af711e301303b0f6e57708755eed4fe622ecf
    66 rdf:type schema:PropertyValue
    67 Nf6d19c5e718841098769098520a9accb rdf:first Nfe13e769802348c0be2b157eaeeac4a7
    68 rdf:rest rdf:nil
    69 Nf8d55bf2337c4cfd9483dca363a16062 schema:location Berlin, Heidelberg
    70 schema:name Springer Berlin Heidelberg
    71 rdf:type schema:Organisation
    72 Nfe13e769802348c0be2b157eaeeac4a7 schema:familyName Álvarez
    73 schema:givenName José R.
    74 rdf:type schema:Person
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Artificial Intelligence and Image Processing
    80 rdf:type schema:DefinedTerm
    81 sg:person.010775507153.73 schema:affiliation Na3e802d0d9cb49e981e5b94611c1f1ed
    82 schema:familyName de Castro
    83 schema:givenName Antonio J.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010775507153.73
    85 rdf:type schema:Person
    86 sg:person.011022613711.04 schema:affiliation N7acb0dc8c61b48229db733b0c5ca75de
    87 schema:familyName Briz
    88 schema:givenName Susana
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011022613711.04
    90 rdf:type schema:Person
    91 sg:person.011164335231.10 schema:affiliation Nbc8c6504b9874dc2aec785cad5d83f1c
    92 schema:familyName García-Cuesta
    93 schema:givenName Esteban
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164335231.10
    95 rdf:type schema:Person
    96 sg:person.014120134727.56 schema:affiliation Nc18f07d35bfb411ba11af544dd3b9e52
    97 schema:familyName Fernández-Gómez
    98 schema:givenName Isabel
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120134727.56
    100 rdf:type schema:Person
    101 sg:pub.10.1007/11875581_91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007915074
    102 https://doi.org/10.1007/11875581_91
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1002/bbpc.19950990325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024251431
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1002/qj.49712656318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015736834
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.jqsrt.2006.02.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012919930
    109 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...