Learning the Semantic Meaning of a Concept from the Web View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Yang Yu , Yun Peng

ABSTRACT

Many researchers have used text classification method in solving the ontology mapping problem. Their mapping results heavily depend on the availability of quality exemplars used as training data. However, manual preparation of exemplars is costly. In this work, we propose to automatically extract text from web pages returned by a search engine. Search queries are formed according to the semantic information given in the ontology. We have implemented a prototype system that automates the entire process (from search query formation to conditional probability calculation) and conducted a series of experiments. We assessed the effectiveness of our approach by comparing the obtained conditional probabilities with human expectations. Our main contribution is that we explored the possibilities of utilizing web information for text classification based ontology mapping and made several valuable discoveries on its usefulness for future research. More... »

PAGES

98-109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-72665-4_9

DOI

http://dx.doi.org/10.1007/978-3-540-72665-4_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053635853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA", 
          "id": "http://www.grid.ac/institutes/grid.266673.0", 
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Yun", 
        "id": "sg:person.01136741416.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "Many researchers have used text classification method in solving the ontology mapping problem. Their mapping results heavily depend on the availability of quality exemplars used as training data. However, manual preparation of exemplars is costly. In this work, we propose to automatically extract text from web pages returned by a search engine. Search queries are formed according to the semantic information given in the ontology. We have implemented a prototype system that automates the entire process (from search query formation to conditional probability calculation) and conducted a series of experiments. We assessed the effectiveness of our approach by comparing the obtained conditional probabilities with human expectations. Our main contribution is that we explored the possibilities of utilizing web information for text classification based ontology mapping and made several valuable discoveries on its usefulness for future research.", 
    "editor": [
      {
        "familyName": "Kobti", 
        "givenName": "Ziad", 
        "type": "Person"
      }, 
      {
        "familyName": "Wu", 
        "givenName": "Dan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-72665-4_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-72664-7", 
        "978-3-540-72665-4"
      ], 
      "name": "Advances in Artificial Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "ontology mapping problem", 
      "text classification methods", 
      "web information", 
      "search queries", 
      "web pages", 
      "text classification", 
      "ontology mapping", 
      "search engines", 
      "semantic information", 
      "training data", 
      "prototype system", 
      "mapping problem", 
      "semantic meaning", 
      "human expectations", 
      "classification method", 
      "main contribution", 
      "manual preparation", 
      "entire process", 
      "queries", 
      "series of experiments", 
      "conditional probability", 
      "information", 
      "ontology", 
      "mapping results", 
      "pages", 
      "Web", 
      "engine", 
      "classification", 
      "exemplars", 
      "text", 
      "effectiveness", 
      "researchers", 
      "system", 
      "mapping", 
      "concept", 
      "valuable discoveries", 
      "work", 
      "discovery", 
      "availability", 
      "usefulness", 
      "data", 
      "method", 
      "experiments", 
      "future research", 
      "probability", 
      "research", 
      "process", 
      "results", 
      "contribution", 
      "possibility", 
      "meaning", 
      "expectations", 
      "series", 
      "preparation", 
      "problem", 
      "approach"
    ], 
    "name": "Learning the Semantic Meaning of a Concept from the Web", 
    "pagination": "98-109", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053635853"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-72665-4_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-72665-4_9", 
      "https://app.dimensions.ai/details/publication/pub.1053635853"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_82.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-72665-4_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72665-4_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72665-4_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72665-4_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72665-4_9'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      83 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-72665-4_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author Nfa963792db5748718fa5c50e38f85892
5 schema:datePublished 2007
6 schema:datePublishedReg 2007-01-01
7 schema:description Many researchers have used text classification method in solving the ontology mapping problem. Their mapping results heavily depend on the availability of quality exemplars used as training data. However, manual preparation of exemplars is costly. In this work, we propose to automatically extract text from web pages returned by a search engine. Search queries are formed according to the semantic information given in the ontology. We have implemented a prototype system that automates the entire process (from search query formation to conditional probability calculation) and conducted a series of experiments. We assessed the effectiveness of our approach by comparing the obtained conditional probabilities with human expectations. Our main contribution is that we explored the possibilities of utilizing web information for text classification based ontology mapping and made several valuable discoveries on its usefulness for future research.
8 schema:editor Nf63ace077f8b49c794060db562cf8d51
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N65a2b2c38cff48e7a3a31d21a162a2ab
13 schema:keywords Web
14 approach
15 availability
16 classification
17 classification method
18 concept
19 conditional probability
20 contribution
21 data
22 discovery
23 effectiveness
24 engine
25 entire process
26 exemplars
27 expectations
28 experiments
29 future research
30 human expectations
31 information
32 main contribution
33 manual preparation
34 mapping
35 mapping problem
36 mapping results
37 meaning
38 method
39 ontology
40 ontology mapping
41 ontology mapping problem
42 pages
43 possibility
44 preparation
45 probability
46 problem
47 process
48 prototype system
49 queries
50 research
51 researchers
52 results
53 search engines
54 search queries
55 semantic information
56 semantic meaning
57 series
58 series of experiments
59 system
60 text
61 text classification
62 text classification methods
63 training data
64 usefulness
65 valuable discoveries
66 web information
67 web pages
68 work
69 schema:name Learning the Semantic Meaning of a Concept from the Web
70 schema:pagination 98-109
71 schema:productId Nc5726590f759439eba323e3948ef9710
72 Nc8ff0b12df21434a99a45f871c4ed89f
73 schema:publisher N451efccf2fef42329dd681b12bd9f2fe
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053635853
75 https://doi.org/10.1007/978-3-540-72665-4_9
76 schema:sdDatePublished 2022-06-01T22:37
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nfd20b34c9402440babe0101575b215d9
79 schema:url https://doi.org/10.1007/978-3-540-72665-4_9
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N0cdfe682918b4bd1a6f2cab4b1851367 schema:affiliation grid-institutes:grid.266673.0
84 schema:familyName Yu
85 schema:givenName Yang
86 rdf:type schema:Person
87 N1829a6f35015420ea9516c3569b3335a schema:familyName Wu
88 schema:givenName Dan
89 rdf:type schema:Person
90 N451efccf2fef42329dd681b12bd9f2fe schema:name Springer Nature
91 rdf:type schema:Organisation
92 N4bb15f9051c54b3e804482dc72e9d4cb rdf:first sg:person.01136741416.72
93 rdf:rest rdf:nil
94 N65a2b2c38cff48e7a3a31d21a162a2ab schema:isbn 978-3-540-72664-7
95 978-3-540-72665-4
96 schema:name Advances in Artificial Intelligence
97 rdf:type schema:Book
98 Nc5726590f759439eba323e3948ef9710 schema:name dimensions_id
99 schema:value pub.1053635853
100 rdf:type schema:PropertyValue
101 Nc8ff0b12df21434a99a45f871c4ed89f schema:name doi
102 schema:value 10.1007/978-3-540-72665-4_9
103 rdf:type schema:PropertyValue
104 Ne5e13b2940df494ba44daf55c6aa0ca9 rdf:first N1829a6f35015420ea9516c3569b3335a
105 rdf:rest rdf:nil
106 Neaee6291a7e44f4f94aa3d6b58a2b174 schema:familyName Kobti
107 schema:givenName Ziad
108 rdf:type schema:Person
109 Nf63ace077f8b49c794060db562cf8d51 rdf:first Neaee6291a7e44f4f94aa3d6b58a2b174
110 rdf:rest Ne5e13b2940df494ba44daf55c6aa0ca9
111 Nfa963792db5748718fa5c50e38f85892 rdf:first N0cdfe682918b4bd1a6f2cab4b1851367
112 rdf:rest N4bb15f9051c54b3e804482dc72e9d4cb
113 Nfd20b34c9402440babe0101575b215d9 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
116 schema:name Information and Computing Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
119 schema:name Artificial Intelligence and Image Processing
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information Systems
123 rdf:type schema:DefinedTerm
124 sg:person.01136741416.72 schema:affiliation grid-institutes:grid.266673.0
125 schema:familyName Peng
126 schema:givenName Yun
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136741416.72
128 rdf:type schema:Person
129 grid-institutes:grid.266673.0 schema:alternateName Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
130 schema:name Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...