Visualization of Barrier Tree Sequences Revisited View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Christian Heine , Gerik Scheuermann , Christoph Flamm , Ivo L. Hofacker , Peter F. Stadler

ABSTRACT

The increasing complexity of models for prediction of the native spatial structure of RNA molecules requires visualization methods that help to analyze and understand the models and their predictions. This paper improves the visualization method for sequences of barrier trees previously published by the authors. The barrier trees of these sequences are rough topological simplifications of changing folding landscapes — energy landscapes in which kinetic folding takes place. The folding landscapes themselves are generated for RNA molecules where the number of nucleotides increases. Successive landscapes are thus correlated and so are the corresponding barrier trees. The landscape sequence is visualized by an animation of a barrier tree that changes with time. The animation is created by an adaption of the foresight layout with tolerance algorithm for dynamic graph layout problems. Since it is very general, the main ideas for the adaption are presented: construction and layout of a supergraph, and how to build the final animation from its layout. Our previous suggestions for heuristics lead to visually unpleasing results for some datasets and, generally, suffered from a poor usage of available screen space. We will present some new heuristics that improve the readability of the final animation. More... »

PAGES

275-290

Book

TITLE

Visualization in Medicine and Life Sciences

ISBN

978-3-540-72629-6
978-3-540-72630-2

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16

DOI

http://dx.doi.org/10.1007/978-3-540-72630-2_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007217060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0501", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecological Applications", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Image and Signal Processing Group, Department of Computer Science, University of Leipzig, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heine", 
        "givenName": "Christian", 
        "id": "sg:person.01322065347.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Image and Signal Processing Group, Department of Computer Science, University of Leipzig, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheuermann", 
        "givenName": "Gerik", 
        "id": "sg:person.0777577160.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777577160.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Theoretical Chemistry and Structural Biology, University of Vienna, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flamm", 
        "givenName": "Christoph", 
        "id": "sg:person.01110764033.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110764033.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Theoretical Chemistry and Structural Biology, University of Vienna, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofacker", 
        "givenName": "Ivo L.", 
        "id": "sg:person.01222322364.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bioinformatics Group, Department of Computer Science, University of Leipzig, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Peter F.", 
        "id": "sg:person.0664150133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1478-3967/1/1/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005186039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(98)00272-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021656950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jvlc.1995.1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021866076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b94919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039768569", 
          "https://doi.org/10.1007/b94919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b94919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039768569", 
          "https://doi.org/10.1007/b94919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/142675.142728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041197738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-7721(94)00014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049116874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1355838200992161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054923556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/37/17/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059078710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.841119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/32.221135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061153702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/52.56447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061185698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2006.196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7155/jgaa.00057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073626343"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The increasing complexity of models for prediction of the native spatial structure of RNA molecules requires visualization methods that help to analyze and understand the models and their predictions. This paper improves the visualization method for sequences of barrier trees previously published by the authors. The barrier trees of these sequences are rough topological simplifications of changing folding landscapes \u2014 energy landscapes in which kinetic folding takes place. The folding landscapes themselves are generated for RNA molecules where the number of nucleotides increases. Successive landscapes are thus correlated and so are the corresponding barrier trees. The landscape sequence is visualized by an animation of a barrier tree that changes with time. The animation is created by an adaption of the foresight layout with tolerance algorithm for dynamic graph layout problems. Since it is very general, the main ideas for the adaption are presented: construction and layout of a supergraph, and how to build the final animation from its layout. Our previous suggestions for heuristics lead to visually unpleasing results for some datasets and, generally, suffered from a poor usage of available screen space. We will present some new heuristics that improve the readability of the final animation.", 
    "editor": [
      {
        "familyName": "Linsen", 
        "givenName": "Lars", 
        "type": "Person"
      }, 
      {
        "familyName": "Hagen", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Hamann", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-72630-2_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580380", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-540-72629-6", 
        "978-3-540-72630-2"
      ], 
      "name": "Visualization in Medicine and Life Sciences", 
      "type": "Book"
    }, 
    "name": "Visualization of Barrier Tree Sequences Revisited", 
    "pagination": "275-290", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-72630-2_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22603bf8f6af93b21cb5f065b607beb86de9c4c7e75f8f71f9f94ebe6b1d0641"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007217060"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-72630-2_16", 
      "https://app.dimensions.ai/details/publication/pub.1007217060"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000581.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-72630-2_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-72630-2_16 schema:about anzsrc-for:05
2 anzsrc-for:0501
3 schema:author N44159944057d4d05aceb57c9002d8cd8
4 schema:citation sg:pub.10.1007/b94919
5 https://doi.org/10.1006/jvlc.1995.1010
6 https://doi.org/10.1016/0925-7721(94)00014-x
7 https://doi.org/10.1016/s0304-3975(98)00272-2
8 https://doi.org/10.1017/s1355838200992161
9 https://doi.org/10.1088/0305-4470/37/17/005
10 https://doi.org/10.1088/1478-3967/1/1/002
11 https://doi.org/10.1109/2945.841119
12 https://doi.org/10.1109/32.221135
13 https://doi.org/10.1109/52.56447
14 https://doi.org/10.1109/tvcg.2006.196
15 https://doi.org/10.1126/science.220.4598.671
16 https://doi.org/10.1145/142675.142728
17 https://doi.org/10.7155/jgaa.00057
18 schema:datePublished 2008
19 schema:datePublishedReg 2008-01-01
20 schema:description The increasing complexity of models for prediction of the native spatial structure of RNA molecules requires visualization methods that help to analyze and understand the models and their predictions. This paper improves the visualization method for sequences of barrier trees previously published by the authors. The barrier trees of these sequences are rough topological simplifications of changing folding landscapes — energy landscapes in which kinetic folding takes place. The folding landscapes themselves are generated for RNA molecules where the number of nucleotides increases. Successive landscapes are thus correlated and so are the corresponding barrier trees. The landscape sequence is visualized by an animation of a barrier tree that changes with time. The animation is created by an adaption of the foresight layout with tolerance algorithm for dynamic graph layout problems. Since it is very general, the main ideas for the adaption are presented: construction and layout of a supergraph, and how to build the final animation from its layout. Our previous suggestions for heuristics lead to visually unpleasing results for some datasets and, generally, suffered from a poor usage of available screen space. We will present some new heuristics that improve the readability of the final animation.
21 schema:editor Neaa79e12b6604237a483d950032906cd
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Nbbeadab3e0484e199f81882e135c0cc4
26 schema:name Visualization of Barrier Tree Sequences Revisited
27 schema:pagination 275-290
28 schema:productId N02c9d9e932b54ebea1f6018ab46946ae
29 N3fda3ad11062464a8d17996ed5a52fc6
30 Nfc85beac22404484b20cd552379e5639
31 schema:publisher N1c03740a59cc49f08971e3f049c83115
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007217060
33 https://doi.org/10.1007/978-3-540-72630-2_16
34 schema:sdDatePublished 2019-04-15T12:10
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nfa7d9efc5f9a463da6c2ef4d4cd82a00
37 schema:url http://link.springer.com/10.1007/978-3-540-72630-2_16
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N02c9d9e932b54ebea1f6018ab46946ae schema:name dimensions_id
42 schema:value pub.1007217060
43 rdf:type schema:PropertyValue
44 N1c03740a59cc49f08971e3f049c83115 schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 N231db0639786425cb6fbfb275d42621a schema:name Department of Theoretical Chemistry and Structural Biology, University of Vienna, USA
48 rdf:type schema:Organization
49 N29030e320856497b8478aeba2fdb5523 schema:name Department of Theoretical Chemistry and Structural Biology, University of Vienna, USA
50 rdf:type schema:Organization
51 N3062ed90b6e34e609682cb669cb312ab schema:name Bioinformatics Group, Department of Computer Science, University of Leipzig, USA
52 rdf:type schema:Organization
53 N3743ac88b61246c683a1b319951094df schema:name Image and Signal Processing Group, Department of Computer Science, University of Leipzig, USA
54 rdf:type schema:Organization
55 N3fda3ad11062464a8d17996ed5a52fc6 schema:name doi
56 schema:value 10.1007/978-3-540-72630-2_16
57 rdf:type schema:PropertyValue
58 N44159944057d4d05aceb57c9002d8cd8 rdf:first sg:person.01322065347.76
59 rdf:rest Ne3345465bcba4cc19c3bb7680a5be960
60 N6476e8a4f8614b389589b179cef2f4ec schema:familyName Hagen
61 schema:givenName Hans
62 rdf:type schema:Person
63 Na6e727abf0d0441aa7bd509038d0f356 schema:familyName Linsen
64 schema:givenName Lars
65 rdf:type schema:Person
66 Nb158f36afa964db68da69f3b1748bfb9 rdf:first sg:person.01110764033.35
67 rdf:rest Nce2c5a0f2b144ccdb08c2a2cb71e6ad6
68 Nbbeadab3e0484e199f81882e135c0cc4 schema:isbn 978-3-540-72629-6
69 978-3-540-72630-2
70 schema:name Visualization in Medicine and Life Sciences
71 rdf:type schema:Book
72 Nce2c5a0f2b144ccdb08c2a2cb71e6ad6 rdf:first sg:person.01222322364.52
73 rdf:rest Nf93737951a654529942aa6fa7d8ecfbe
74 Nced0792c2f6d4682b0d33fc9fcdb9065 schema:name Image and Signal Processing Group, Department of Computer Science, University of Leipzig, USA
75 rdf:type schema:Organization
76 Ndec20cd0d79349b18b47bbc666849145 rdf:first Nf89ab3532032405580ce77f9dbafdcb1
77 rdf:rest rdf:nil
78 Ne3345465bcba4cc19c3bb7680a5be960 rdf:first sg:person.0777577160.41
79 rdf:rest Nb158f36afa964db68da69f3b1748bfb9
80 Neaa79e12b6604237a483d950032906cd rdf:first Na6e727abf0d0441aa7bd509038d0f356
81 rdf:rest Neb03b1bbba794784803dad015275d91d
82 Neb03b1bbba794784803dad015275d91d rdf:first N6476e8a4f8614b389589b179cef2f4ec
83 rdf:rest Ndec20cd0d79349b18b47bbc666849145
84 Nf89ab3532032405580ce77f9dbafdcb1 schema:familyName Hamann
85 schema:givenName Bernd
86 rdf:type schema:Person
87 Nf93737951a654529942aa6fa7d8ecfbe rdf:first sg:person.0664150133.70
88 rdf:rest rdf:nil
89 Nfa7d9efc5f9a463da6c2ef4d4cd82a00 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nfc85beac22404484b20cd552379e5639 schema:name readcube_id
92 schema:value 22603bf8f6af93b21cb5f065b607beb86de9c4c7e75f8f71f9f94ebe6b1d0641
93 rdf:type schema:PropertyValue
94 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
95 schema:name Environmental Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0501 schema:inDefinedTermSet anzsrc-for:
98 schema:name Ecological Applications
99 rdf:type schema:DefinedTerm
100 sg:grant.7580380 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-540-72630-2_16
101 rdf:type schema:MonetaryGrant
102 sg:person.01110764033.35 schema:affiliation N231db0639786425cb6fbfb275d42621a
103 schema:familyName Flamm
104 schema:givenName Christoph
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110764033.35
106 rdf:type schema:Person
107 sg:person.01222322364.52 schema:affiliation N29030e320856497b8478aeba2fdb5523
108 schema:familyName Hofacker
109 schema:givenName Ivo L.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52
111 rdf:type schema:Person
112 sg:person.01322065347.76 schema:affiliation Nced0792c2f6d4682b0d33fc9fcdb9065
113 schema:familyName Heine
114 schema:givenName Christian
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76
116 rdf:type schema:Person
117 sg:person.0664150133.70 schema:affiliation N3062ed90b6e34e609682cb669cb312ab
118 schema:familyName Stadler
119 schema:givenName Peter F.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70
121 rdf:type schema:Person
122 sg:person.0777577160.41 schema:affiliation N3743ac88b61246c683a1b319951094df
123 schema:familyName Scheuermann
124 schema:givenName Gerik
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777577160.41
126 rdf:type schema:Person
127 sg:pub.10.1007/b94919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039768569
128 https://doi.org/10.1007/b94919
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1006/jvlc.1995.1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021866076
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0925-7721(94)00014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049116874
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0304-3975(98)00272-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021656950
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s1355838200992161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054923556
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/0305-4470/37/17/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059078710
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/1478-3967/1/1/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005186039
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/2945.841119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146328
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/32.221135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061153702
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/52.56447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061185698
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tvcg.2006.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812663
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/142675.142728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041197738
153 rdf:type schema:CreativeWork
154 https://doi.org/10.7155/jgaa.00057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073626343
155 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...