Visualization of Barrier Tree Sequences Revisited View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Christian Heine , Gerik Scheuermann , Christoph Flamm , Ivo L. Hofacker , Peter F. Stadler

ABSTRACT

The increasing complexity of models for prediction of the native spatial structure of RNA molecules requires visualization methods that help to analyze and understand the models and their predictions. This paper improves the visualization method for sequences of barrier trees previously published by the authors. The barrier trees of these sequences are rough topological simplifications of changing folding landscapes — energy landscapes in which kinetic folding takes place. The folding landscapes themselves are generated for RNA molecules where the number of nucleotides increases. Successive landscapes are thus correlated and so are the corresponding barrier trees. The landscape sequence is visualized by an animation of a barrier tree that changes with time. The animation is created by an adaption of the foresight layout with tolerance algorithm for dynamic graph layout problems. Since it is very general, the main ideas for the adaption are presented: construction and layout of a supergraph, and how to build the final animation from its layout. Our previous suggestions for heuristics lead to visually unpleasing results for some datasets and, generally, suffered from a poor usage of available screen space. We will present some new heuristics that improve the readability of the final animation. More... »

PAGES

275-290

Book

TITLE

Visualization in Medicine and Life Sciences

ISBN

978-3-540-72629-6
978-3-540-72630-2

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16

DOI

http://dx.doi.org/10.1007/978-3-540-72630-2_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007217060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0501", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecological Applications", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Image and Signal Processing Group, Department of Computer Science, University of Leipzig, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heine", 
        "givenName": "Christian", 
        "id": "sg:person.01322065347.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Image and Signal Processing Group, Department of Computer Science, University of Leipzig, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheuermann", 
        "givenName": "Gerik", 
        "id": "sg:person.0777577160.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777577160.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Theoretical Chemistry and Structural Biology, University of Vienna, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flamm", 
        "givenName": "Christoph", 
        "id": "sg:person.01110764033.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110764033.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Theoretical Chemistry and Structural Biology, University of Vienna, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofacker", 
        "givenName": "Ivo L.", 
        "id": "sg:person.01222322364.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bioinformatics Group, Department of Computer Science, University of Leipzig, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stadler", 
        "givenName": "Peter F.", 
        "id": "sg:person.0664150133.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1478-3967/1/1/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005186039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(98)00272-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021656950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jvlc.1995.1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021866076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b94919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039768569", 
          "https://doi.org/10.1007/b94919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b94919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039768569", 
          "https://doi.org/10.1007/b94919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/142675.142728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041197738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-7721(94)00014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049116874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1355838200992161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054923556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/37/17/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059078710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.841119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/32.221135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061153702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/52.56447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061185698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2006.196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7155/jgaa.00057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073626343"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The increasing complexity of models for prediction of the native spatial structure of RNA molecules requires visualization methods that help to analyze and understand the models and their predictions. This paper improves the visualization method for sequences of barrier trees previously published by the authors. The barrier trees of these sequences are rough topological simplifications of changing folding landscapes \u2014 energy landscapes in which kinetic folding takes place. The folding landscapes themselves are generated for RNA molecules where the number of nucleotides increases. Successive landscapes are thus correlated and so are the corresponding barrier trees. The landscape sequence is visualized by an animation of a barrier tree that changes with time. The animation is created by an adaption of the foresight layout with tolerance algorithm for dynamic graph layout problems. Since it is very general, the main ideas for the adaption are presented: construction and layout of a supergraph, and how to build the final animation from its layout. Our previous suggestions for heuristics lead to visually unpleasing results for some datasets and, generally, suffered from a poor usage of available screen space. We will present some new heuristics that improve the readability of the final animation.", 
    "editor": [
      {
        "familyName": "Linsen", 
        "givenName": "Lars", 
        "type": "Person"
      }, 
      {
        "familyName": "Hagen", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Hamann", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-72630-2_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580380", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-540-72629-6", 
        "978-3-540-72630-2"
      ], 
      "name": "Visualization in Medicine and Life Sciences", 
      "type": "Book"
    }, 
    "name": "Visualization of Barrier Tree Sequences Revisited", 
    "pagination": "275-290", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-72630-2_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22603bf8f6af93b21cb5f065b607beb86de9c4c7e75f8f71f9f94ebe6b1d0641"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007217060"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-72630-2_16", 
      "https://app.dimensions.ai/details/publication/pub.1007217060"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000581.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-72630-2_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72630-2_16'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-72630-2_16 schema:about anzsrc-for:05
2 anzsrc-for:0501
3 schema:author Na2db0caf37c24bc6bfaec46ad6719cd5
4 schema:citation sg:pub.10.1007/b94919
5 https://doi.org/10.1006/jvlc.1995.1010
6 https://doi.org/10.1016/0925-7721(94)00014-x
7 https://doi.org/10.1016/s0304-3975(98)00272-2
8 https://doi.org/10.1017/s1355838200992161
9 https://doi.org/10.1088/0305-4470/37/17/005
10 https://doi.org/10.1088/1478-3967/1/1/002
11 https://doi.org/10.1109/2945.841119
12 https://doi.org/10.1109/32.221135
13 https://doi.org/10.1109/52.56447
14 https://doi.org/10.1109/tvcg.2006.196
15 https://doi.org/10.1126/science.220.4598.671
16 https://doi.org/10.1145/142675.142728
17 https://doi.org/10.7155/jgaa.00057
18 schema:datePublished 2008
19 schema:datePublishedReg 2008-01-01
20 schema:description The increasing complexity of models for prediction of the native spatial structure of RNA molecules requires visualization methods that help to analyze and understand the models and their predictions. This paper improves the visualization method for sequences of barrier trees previously published by the authors. The barrier trees of these sequences are rough topological simplifications of changing folding landscapes — energy landscapes in which kinetic folding takes place. The folding landscapes themselves are generated for RNA molecules where the number of nucleotides increases. Successive landscapes are thus correlated and so are the corresponding barrier trees. The landscape sequence is visualized by an animation of a barrier tree that changes with time. The animation is created by an adaption of the foresight layout with tolerance algorithm for dynamic graph layout problems. Since it is very general, the main ideas for the adaption are presented: construction and layout of a supergraph, and how to build the final animation from its layout. Our previous suggestions for heuristics lead to visually unpleasing results for some datasets and, generally, suffered from a poor usage of available screen space. We will present some new heuristics that improve the readability of the final animation.
21 schema:editor Nba785190762841a48a5df9964e99ef85
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N02b67a195142457cb471abff3aec30d9
26 schema:name Visualization of Barrier Tree Sequences Revisited
27 schema:pagination 275-290
28 schema:productId N839bb03aa3514cdda425b3b6f5fc1c87
29 Neb9d5567fcaa420da52b66404adc56dd
30 Nfeeccd11aa3544528f9156ee9d98b493
31 schema:publisher N8d49c1d3c4c74842871c04dabc094495
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007217060
33 https://doi.org/10.1007/978-3-540-72630-2_16
34 schema:sdDatePublished 2019-04-15T12:10
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N145deecdc41e4945b2015331e16ac701
37 schema:url http://link.springer.com/10.1007/978-3-540-72630-2_16
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N02b67a195142457cb471abff3aec30d9 schema:isbn 978-3-540-72629-6
42 978-3-540-72630-2
43 schema:name Visualization in Medicine and Life Sciences
44 rdf:type schema:Book
45 N04bf37db5d324665b96eaa78ce80b27b rdf:first sg:person.01110764033.35
46 rdf:rest Nbcee30ea1723488d82a4dd24fd82b6f7
47 N145deecdc41e4945b2015331e16ac701 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N1b78e0f5d9584d5a8f34a5066be3dfbb rdf:first N7530f4f789c24b43a217f655d97e3573
50 rdf:rest rdf:nil
51 N1c35c428a1f84ad99483b6d16f7127d6 schema:name Image and Signal Processing Group, Department of Computer Science, University of Leipzig, USA
52 rdf:type schema:Organization
53 N2bf4b1de266a4fdc8c177efc1e4cdf79 schema:name Bioinformatics Group, Department of Computer Science, University of Leipzig, USA
54 rdf:type schema:Organization
55 N4443590e98454252b636c9c20cea3b22 schema:familyName Linsen
56 schema:givenName Lars
57 rdf:type schema:Person
58 N61649eece3284e83b79b19d04241ad4f rdf:first sg:person.0777577160.41
59 rdf:rest N04bf37db5d324665b96eaa78ce80b27b
60 N6968dbaf40ed4f699ff822e45de0a165 rdf:first sg:person.0664150133.70
61 rdf:rest rdf:nil
62 N7208a47c57654f19a54748a15bf8b7d6 schema:name Department of Theoretical Chemistry and Structural Biology, University of Vienna, USA
63 rdf:type schema:Organization
64 N7530f4f789c24b43a217f655d97e3573 schema:familyName Hamann
65 schema:givenName Bernd
66 rdf:type schema:Person
67 N839bb03aa3514cdda425b3b6f5fc1c87 schema:name readcube_id
68 schema:value 22603bf8f6af93b21cb5f065b607beb86de9c4c7e75f8f71f9f94ebe6b1d0641
69 rdf:type schema:PropertyValue
70 N8d49c1d3c4c74842871c04dabc094495 schema:location Berlin, Heidelberg
71 schema:name Springer Berlin Heidelberg
72 rdf:type schema:Organisation
73 N9dab7f728d5d49d2a766cf34de033312 schema:familyName Hagen
74 schema:givenName Hans
75 rdf:type schema:Person
76 Na2db0caf37c24bc6bfaec46ad6719cd5 rdf:first sg:person.01322065347.76
77 rdf:rest N61649eece3284e83b79b19d04241ad4f
78 Na680f2f24518491c884f3be909ddf870 schema:name Department of Theoretical Chemistry and Structural Biology, University of Vienna, USA
79 rdf:type schema:Organization
80 Nba785190762841a48a5df9964e99ef85 rdf:first N4443590e98454252b636c9c20cea3b22
81 rdf:rest Nfccbce89f015437c9593d0f1580931ee
82 Nbcee30ea1723488d82a4dd24fd82b6f7 rdf:first sg:person.01222322364.52
83 rdf:rest N6968dbaf40ed4f699ff822e45de0a165
84 Ne1b5b69addc44263aa31acde918c25a8 schema:name Image and Signal Processing Group, Department of Computer Science, University of Leipzig, USA
85 rdf:type schema:Organization
86 Neb9d5567fcaa420da52b66404adc56dd schema:name dimensions_id
87 schema:value pub.1007217060
88 rdf:type schema:PropertyValue
89 Nfccbce89f015437c9593d0f1580931ee rdf:first N9dab7f728d5d49d2a766cf34de033312
90 rdf:rest N1b78e0f5d9584d5a8f34a5066be3dfbb
91 Nfeeccd11aa3544528f9156ee9d98b493 schema:name doi
92 schema:value 10.1007/978-3-540-72630-2_16
93 rdf:type schema:PropertyValue
94 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
95 schema:name Environmental Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0501 schema:inDefinedTermSet anzsrc-for:
98 schema:name Ecological Applications
99 rdf:type schema:DefinedTerm
100 sg:grant.7580380 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-540-72630-2_16
101 rdf:type schema:MonetaryGrant
102 sg:person.01110764033.35 schema:affiliation Na680f2f24518491c884f3be909ddf870
103 schema:familyName Flamm
104 schema:givenName Christoph
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110764033.35
106 rdf:type schema:Person
107 sg:person.01222322364.52 schema:affiliation N7208a47c57654f19a54748a15bf8b7d6
108 schema:familyName Hofacker
109 schema:givenName Ivo L.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52
111 rdf:type schema:Person
112 sg:person.01322065347.76 schema:affiliation N1c35c428a1f84ad99483b6d16f7127d6
113 schema:familyName Heine
114 schema:givenName Christian
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76
116 rdf:type schema:Person
117 sg:person.0664150133.70 schema:affiliation N2bf4b1de266a4fdc8c177efc1e4cdf79
118 schema:familyName Stadler
119 schema:givenName Peter F.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664150133.70
121 rdf:type schema:Person
122 sg:person.0777577160.41 schema:affiliation Ne1b5b69addc44263aa31acde918c25a8
123 schema:familyName Scheuermann
124 schema:givenName Gerik
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777577160.41
126 rdf:type schema:Person
127 sg:pub.10.1007/b94919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039768569
128 https://doi.org/10.1007/b94919
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1006/jvlc.1995.1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021866076
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0925-7721(94)00014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049116874
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0304-3975(98)00272-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021656950
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s1355838200992161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054923556
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/0305-4470/37/17/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059078710
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/1478-3967/1/1/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005186039
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/2945.841119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146328
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/32.221135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061153702
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/52.56447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061185698
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tvcg.2006.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812663
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/142675.142728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041197738
153 rdf:type schema:CreativeWork
154 https://doi.org/10.7155/jgaa.00057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073626343
155 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...