Mining Invisible Tasks from Event Logs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Lijie Wen , Jianmin Wang , Jiaguang Sun

ABSTRACT

Most existing process mining algorithms have problems in dealing with invisible tasks. In this paper, a new process mining algorithm named α# is proposed, which extends the mining capacity of the classical α algorithm by supporting the detection of invisible tasks from event logs. Invisible tasks are first divided into four types according to their functional features, i.e., SIDE, SKIP, REDO and SWITCH. After that, the new ordering relation for detecting mendacious dependencies between tasks that reflects invisible tasks is introduced. Then the construction algorithms for invisible tasks of SIDE and SKIP/REDO/ SWITCH types are proposed respectively. Finally, the α# algorithm constructs the mined process models incorporating invisible tasks in WF-net. A lot of experiments are done to evaluate the mining quality of the proposed α# algorithm and the results are promising. More... »

PAGES

358-365

Book

TITLE

Advances in Data and Web Management

ISBN

978-3-540-72483-4
978-3-540-72524-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-72524-4_38

DOI

http://dx.doi.org/10.1007/978-3-540-72524-4_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029585581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing 100084, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing 100084, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jiaguang", 
        "id": "sg:person.011411464635.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "Most existing process mining algorithms have problems in dealing with invisible tasks. In this paper, a new process mining algorithm named \u03b1# is proposed, which extends the mining capacity of the classical \u03b1 algorithm by supporting the detection of invisible tasks from event logs. Invisible tasks are first divided into four types according to their functional features, i.e., SIDE, SKIP, REDO and SWITCH. After that, the new ordering relation for detecting mendacious dependencies between tasks that reflects invisible tasks is introduced. Then the construction algorithms for invisible tasks of SIDE and SKIP/REDO/ SWITCH types are proposed respectively. Finally, the \u03b1# algorithm constructs the mined process models incorporating invisible tasks in WF-net. A lot of experiments are done to evaluate the mining quality of the proposed \u03b1# algorithm and the results are promising.", 
    "editor": [
      {
        "familyName": "Dong", 
        "givenName": "Guozhu", 
        "type": "Person"
      }, 
      {
        "familyName": "Lin", 
        "givenName": "Xuemin", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Yun", 
        "type": "Person"
      }, 
      {
        "familyName": "Yu", 
        "givenName": "Jeffrey Xu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-72524-4_38", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-72483-4", 
        "978-3-540-72524-4"
      ], 
      "name": "Advances in Data and Web Management", 
      "type": "Book"
    }, 
    "keywords": [
      "process mining algorithms", 
      "invisible tasks", 
      "mining algorithms", 
      "event logs", 
      "new process mining algorithm", 
      "new ordering relation", 
      "mining quality", 
      "WF-nets", 
      "construction algorithm", 
      "algorithm", 
      "process model", 
      "task", 
      "ordering relations", 
      "mining capacity", 
      "log", 
      "skip", 
      "functional features", 
      "detection", 
      "dependency", 
      "features", 
      "redo", 
      "quality", 
      "model", 
      "experiments", 
      "switch", 
      "types", 
      "results", 
      "switch types", 
      "side", 
      "capacity", 
      "relation", 
      "paper", 
      "problem", 
      "existing process mining algorithms", 
      "mendacious dependencies", 
      "SKIP/REDO/ SWITCH types", 
      "REDO/ SWITCH types"
    ], 
    "name": "Mining Invisible Tasks from Event Logs", 
    "pagination": "358-365", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029585581"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-72524-4_38"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-72524-4_38", 
      "https://app.dimensions.ai/details/publication/pub.1029585581"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_167.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-72524-4_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72524-4_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72524-4_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72524-4_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72524-4_38'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-72524-4_38 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2991d172cfe344189ccc624d30f99406
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description Most existing process mining algorithms have problems in dealing with invisible tasks. In this paper, a new process mining algorithm named α# is proposed, which extends the mining capacity of the classical α algorithm by supporting the detection of invisible tasks from event logs. Invisible tasks are first divided into four types according to their functional features, i.e., SIDE, SKIP, REDO and SWITCH. After that, the new ordering relation for detecting mendacious dependencies between tasks that reflects invisible tasks is introduced. Then the construction algorithms for invisible tasks of SIDE and SKIP/REDO/ SWITCH types are proposed respectively. Finally, the α# algorithm constructs the mined process models incorporating invisible tasks in WF-net. A lot of experiments are done to evaluate the mining quality of the proposed α# algorithm and the results are promising.
7 schema:editor N16d5eedeedb84c5fbf966acbe8e287c5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nac322b560b504e52b360458467e6560b
12 schema:keywords REDO/ SWITCH types
13 SKIP/REDO/ SWITCH types
14 WF-nets
15 algorithm
16 capacity
17 construction algorithm
18 dependency
19 detection
20 event logs
21 existing process mining algorithms
22 experiments
23 features
24 functional features
25 invisible tasks
26 log
27 mendacious dependencies
28 mining algorithms
29 mining capacity
30 mining quality
31 model
32 new ordering relation
33 new process mining algorithm
34 ordering relations
35 paper
36 problem
37 process mining algorithms
38 process model
39 quality
40 redo
41 relation
42 results
43 side
44 skip
45 switch
46 switch types
47 task
48 types
49 schema:name Mining Invisible Tasks from Event Logs
50 schema:pagination 358-365
51 schema:productId N531a25367394423a8fe0ffeae9e06ee8
52 Nb6066c818a4b47548f79009b780aac9a
53 schema:publisher N444034f6de974361b46aa8c0a9518a23
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029585581
55 https://doi.org/10.1007/978-3-540-72524-4_38
56 schema:sdDatePublished 2022-01-01T19:10
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N6119220ba419493788bd1e57e0928c6f
59 schema:url https://doi.org/10.1007/978-3-540-72524-4_38
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N040b5a1c25aa49158ffad1f230b0bf4c schema:familyName Yang
64 schema:givenName Yun
65 rdf:type schema:Person
66 N16d5eedeedb84c5fbf966acbe8e287c5 rdf:first N55f007a2e7064f13a7410472dd36b10b
67 rdf:rest N5631c4d8aec04fd5b9cf34450ec034f6
68 N1b4c224cc6bd44adab30531edec44f57 rdf:first sg:person.011411464635.59
69 rdf:rest rdf:nil
70 N1c0ca04a7cdf47c4858f449411f2cd5f rdf:first N040b5a1c25aa49158ffad1f230b0bf4c
71 rdf:rest N7f586a30374d4667a45426f2aa7093e8
72 N1ffa24ed3ff54f51bc3ddd76b567d498 schema:familyName Yu
73 schema:givenName Jeffrey Xu
74 rdf:type schema:Person
75 N2991d172cfe344189ccc624d30f99406 rdf:first sg:person.013640554311.55
76 rdf:rest Nc9eda062cae444e48d66a8fd818d7256
77 N444034f6de974361b46aa8c0a9518a23 schema:name Springer Nature
78 rdf:type schema:Organisation
79 N531a25367394423a8fe0ffeae9e06ee8 schema:name doi
80 schema:value 10.1007/978-3-540-72524-4_38
81 rdf:type schema:PropertyValue
82 N54ead893aa0a46ada0436bfaa07e6674 schema:familyName Lin
83 schema:givenName Xuemin
84 rdf:type schema:Person
85 N55f007a2e7064f13a7410472dd36b10b schema:familyName Dong
86 schema:givenName Guozhu
87 rdf:type schema:Person
88 N5631c4d8aec04fd5b9cf34450ec034f6 rdf:first N54ead893aa0a46ada0436bfaa07e6674
89 rdf:rest Nebac0139d6d747da90bc7a8e125f036b
90 N6119220ba419493788bd1e57e0928c6f schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N7f586a30374d4667a45426f2aa7093e8 rdf:first N1ffa24ed3ff54f51bc3ddd76b567d498
93 rdf:rest rdf:nil
94 Nac322b560b504e52b360458467e6560b schema:isbn 978-3-540-72483-4
95 978-3-540-72524-4
96 schema:name Advances in Data and Web Management
97 rdf:type schema:Book
98 Nb6066c818a4b47548f79009b780aac9a schema:name dimensions_id
99 schema:value pub.1029585581
100 rdf:type schema:PropertyValue
101 Nc9eda062cae444e48d66a8fd818d7256 rdf:first sg:person.012303351315.43
102 rdf:rest N1b4c224cc6bd44adab30531edec44f57
103 Nebac0139d6d747da90bc7a8e125f036b rdf:first Nf4c3f2e8dbc145b697bddb620e43068e
104 rdf:rest N1c0ca04a7cdf47c4858f449411f2cd5f
105 Nf4c3f2e8dbc145b697bddb620e43068e schema:familyName Wang
106 schema:givenName Wei
107 rdf:type schema:Person
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
112 schema:name Artificial Intelligence and Image Processing
113 rdf:type schema:DefinedTerm
114 sg:person.011411464635.59 schema:affiliation grid-institutes:grid.12527.33
115 schema:familyName Sun
116 schema:givenName Jiaguang
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59
118 rdf:type schema:Person
119 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
120 schema:familyName Wang
121 schema:givenName Jianmin
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
123 rdf:type schema:Person
124 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
125 schema:familyName Wen
126 schema:givenName Lijie
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
128 rdf:type schema:Person
129 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, Beijing 100084, China
130 schema:name School of Software, Tsinghua University, Beijing 100084, China
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...