On the Diversity-Performance Relationship for Majority Voting in Classifier Ensembles View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Yun-Sheng Chung , D. Frank Hsu , Chuan Yi Tang

ABSTRACT

Combining multiple classifier systems (MCS’) has been shown to outperform single classifier system. It has been demonstrated that improvement for ensemble performance depends on either the diversity among or the performance of individual systems. A variety of diversity measures and ensemble methods have been proposed and studied. It remains a challenging problem to estimate the ensemble performance in terms of the performance of and the diversity among individual systems. In this paper, we establish upper and lower bounds for P m (performance of the ensemble using majority voting) in terms of P̄(average performance of individual systems) and D̄ (average entropy diversity measure among individual systems). These bounds are shown to be tight using the concept of a performance distribution pattern (PDP) for the input set. Moreover, we showed that when P̄ is big enough, the ensemble performance P m resulting from a maximum (information-theoretic) entropy PDP is an increasing function with respect to the diversity measure D̄. Five experiments using data sets from various applications domains are conducted to demonstrate the complexity, richness, and diverseness of the problem in estimating the ensemble performance. More... »

PAGES

407-420

References to SciGraph publications

Book

TITLE

Multiple Classifier Systems

ISBN

978-3-540-72481-0
978-3-540-72523-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-72523-7_41

DOI

http://dx.doi.org/10.1007/978-3-540-72523-7_41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029707521


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 300, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Yun-Sheng", 
        "id": "sg:person.014067475277.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014067475277.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fordham University", 
          "id": "https://www.grid.ac/institutes/grid.256023.0", 
          "name": [
            "Department of Computer and Information Sciences, Fordham University, LL813, 113 West 60th Street, New York, NY 10023, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "D. Frank", 
        "id": "sg:person.012372547527.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012372547527.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 300, ROC"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Chuan Yi", 
        "id": "sg:person.01312526135.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-45014-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000204280", 
          "https://doi.org/10.1007/3-540-45014-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45014-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000204280", 
          "https://doi.org/10.1007/3-540-45014-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/095400996116785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005753699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1566-2535(02)00051-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005874774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-002-0173-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008265979", 
          "https://doi.org/10.1007/s10044-002-0173-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44795-4_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010720052", 
          "https://doi.org/10.1007/3-540-44795-4_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44795-4_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010720052", 
          "https://doi.org/10.1007/3-540-44795-4_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012804619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10791-005-6994-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018852347", 
          "https://doi.org/10.1007/s10791-005-6994-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10791-005-6994-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018852347", 
          "https://doi.org/10.1007/s10791-005-6994-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-44871-6_130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021308019", 
          "https://doi.org/10.1007/978-3-540-44871-6_130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-44871-6_130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021308019", 
          "https://doi.org/10.1007/978-3-540-44871-6_130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1024691079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024161650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11494683_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028990156", 
          "https://doi.org/10.1007/11494683_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11494683_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028990156", 
          "https://doi.org/10.1007/11494683_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2004.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038195032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1566-2535(02)00094-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046019695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1566-2535(02)00094-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046019695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100440200030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051088091", 
          "https://doi.org/10.1007/s100440200030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022859003006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051759842", 
          "https://doi.org/10.1023/a:1022859003006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.273716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.58871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.667881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2003.1159950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742892"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "Combining multiple classifier systems (MCS\u2019) has been shown to outperform single classifier system. It has been demonstrated that improvement for ensemble performance depends on either the diversity among or the performance of individual systems. A variety of diversity measures and ensemble methods have been proposed and studied. It remains a challenging problem to estimate the ensemble performance in terms of the performance of and the diversity among individual systems. In this paper, we establish upper and lower bounds for P m (performance of the ensemble using majority voting) in terms of P\u0304(average performance of individual systems) and D\u0304 (average entropy diversity measure among individual systems). These bounds are shown to be tight using the concept of a performance distribution pattern (PDP) for the input set. Moreover, we showed that when P\u0304 is big enough, the ensemble performance P m resulting from a maximum (information-theoretic) entropy PDP is an increasing function with respect to the diversity measure D\u0304. Five experiments using data sets from various applications domains are conducted to demonstrate the complexity, richness, and diverseness of the problem in estimating the ensemble performance.", 
    "editor": [
      {
        "familyName": "Haindl", 
        "givenName": "Michal", 
        "type": "Person"
      }, 
      {
        "familyName": "Kittler", 
        "givenName": "Josef", 
        "type": "Person"
      }, 
      {
        "familyName": "Roli", 
        "givenName": "Fabio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-72523-7_41", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-72481-0", 
        "978-3-540-72523-7"
      ], 
      "name": "Multiple Classifier Systems", 
      "type": "Book"
    }, 
    "name": "On the Diversity-Performance Relationship for Majority Voting in Classifier Ensembles", 
    "pagination": "407-420", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-72523-7_41"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d854b72c0b239441eff5b1ad89aae893a5b3dedf4015faf40bde9ec44e82532"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029707521"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-72523-7_41", 
      "https://app.dimensions.ai/details/publication/pub.1029707521"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-72523-7_41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72523-7_41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72523-7_41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72523-7_41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-72523-7_41'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-72523-7_41 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N141806c7fa9d411f9de4d587004e06dd
4 schema:citation sg:pub.10.1007/11494683_27
5 sg:pub.10.1007/3-540-44795-4_49
6 sg:pub.10.1007/3-540-45014-9_1
7 sg:pub.10.1007/978-3-540-44871-6_130
8 sg:pub.10.1007/s10044-002-0173-7
9 sg:pub.10.1007/s100440200030
10 sg:pub.10.1007/s10791-005-6994-4
11 sg:pub.10.1023/a:1010933404324
12 sg:pub.10.1023/a:1022859003006
13 https://doi.org/10.1016/j.inffus.2004.04.009
14 https://doi.org/10.1016/j.patcog.2005.08.017
15 https://doi.org/10.1016/s1566-2535(02)00051-9
16 https://doi.org/10.1016/s1566-2535(02)00094-5
17 https://doi.org/10.1080/095400996116785
18 https://doi.org/10.1109/34.273716
19 https://doi.org/10.1109/34.58871
20 https://doi.org/10.1109/34.667881
21 https://doi.org/10.1109/tpami.2003.1159950
22 https://doi.org/10.1109/tpami.2005.109
23 https://doi.org/10.1109/tpami.2005.249
24 https://doi.org/10.1214/aos/1024691079
25 schema:datePublished 2007
26 schema:datePublishedReg 2007-01-01
27 schema:description Combining multiple classifier systems (MCS’) has been shown to outperform single classifier system. It has been demonstrated that improvement for ensemble performance depends on either the diversity among or the performance of individual systems. A variety of diversity measures and ensemble methods have been proposed and studied. It remains a challenging problem to estimate the ensemble performance in terms of the performance of and the diversity among individual systems. In this paper, we establish upper and lower bounds for P m (performance of the ensemble using majority voting) in terms of P̄(average performance of individual systems) and D̄ (average entropy diversity measure among individual systems). These bounds are shown to be tight using the concept of a performance distribution pattern (PDP) for the input set. Moreover, we showed that when P̄ is big enough, the ensemble performance P m resulting from a maximum (information-theoretic) entropy PDP is an increasing function with respect to the diversity measure D̄. Five experiments using data sets from various applications domains are conducted to demonstrate the complexity, richness, and diverseness of the problem in estimating the ensemble performance.
28 schema:editor N88abb53925f845ef94186896bf456a1e
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N6badbde0783f4582b56f99f7b056511c
33 schema:name On the Diversity-Performance Relationship for Majority Voting in Classifier Ensembles
34 schema:pagination 407-420
35 schema:productId N5ac2375c263146e1a889411747f7163d
36 N84f6a4f89ac744d99000a22bbd1c49ee
37 Nfcd618bc04f948aca0834227754408f0
38 schema:publisher N5b3b76ffc29a4a09bb4d3d37af38874c
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029707521
40 https://doi.org/10.1007/978-3-540-72523-7_41
41 schema:sdDatePublished 2019-04-15T11:35
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nd05f98bab01c433e97ef55f4a332841d
44 schema:url http://link.springer.com/10.1007/978-3-540-72523-7_41
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N141806c7fa9d411f9de4d587004e06dd rdf:first sg:person.014067475277.58
49 rdf:rest Ne2e14fd2a7a449b9b8aa0d83ce4bb817
50 N21887e9292504c05aae012ea98f6a43a schema:familyName Roli
51 schema:givenName Fabio
52 rdf:type schema:Person
53 N29262ccd21534521bd2370154c19c8c8 rdf:first N21887e9292504c05aae012ea98f6a43a
54 rdf:rest rdf:nil
55 N42eb214227d64957b1581483b2c18deb rdf:first sg:person.01312526135.27
56 rdf:rest rdf:nil
57 N5ac2375c263146e1a889411747f7163d schema:name readcube_id
58 schema:value 8d854b72c0b239441eff5b1ad89aae893a5b3dedf4015faf40bde9ec44e82532
59 rdf:type schema:PropertyValue
60 N5b3b76ffc29a4a09bb4d3d37af38874c schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 N6badbde0783f4582b56f99f7b056511c schema:isbn 978-3-540-72481-0
64 978-3-540-72523-7
65 schema:name Multiple Classifier Systems
66 rdf:type schema:Book
67 N84f6a4f89ac744d99000a22bbd1c49ee schema:name doi
68 schema:value 10.1007/978-3-540-72523-7_41
69 rdf:type schema:PropertyValue
70 N88abb53925f845ef94186896bf456a1e rdf:first N94456d1efaaa4569a5ee185a5712999a
71 rdf:rest Na85075668b96422cba03e90e2cd74a17
72 N94456d1efaaa4569a5ee185a5712999a schema:familyName Haindl
73 schema:givenName Michal
74 rdf:type schema:Person
75 Na82baa3d758a41e7b55af90033185ea2 schema:familyName Kittler
76 schema:givenName Josef
77 rdf:type schema:Person
78 Na85075668b96422cba03e90e2cd74a17 rdf:first Na82baa3d758a41e7b55af90033185ea2
79 rdf:rest N29262ccd21534521bd2370154c19c8c8
80 Nd05f98bab01c433e97ef55f4a332841d schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Ne2e14fd2a7a449b9b8aa0d83ce4bb817 rdf:first sg:person.012372547527.89
83 rdf:rest N42eb214227d64957b1581483b2c18deb
84 Nfcd618bc04f948aca0834227754408f0 schema:name dimensions_id
85 schema:value pub.1029707521
86 rdf:type schema:PropertyValue
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information Systems
92 rdf:type schema:DefinedTerm
93 sg:person.012372547527.89 schema:affiliation https://www.grid.ac/institutes/grid.256023.0
94 schema:familyName Hsu
95 schema:givenName D. Frank
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012372547527.89
97 rdf:type schema:Person
98 sg:person.01312526135.27 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
99 schema:familyName Tang
100 schema:givenName Chuan Yi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312526135.27
102 rdf:type schema:Person
103 sg:person.014067475277.58 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
104 schema:familyName Chung
105 schema:givenName Yun-Sheng
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014067475277.58
107 rdf:type schema:Person
108 sg:pub.10.1007/11494683_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028990156
109 https://doi.org/10.1007/11494683_27
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/3-540-44795-4_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010720052
112 https://doi.org/10.1007/3-540-44795-4_49
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/3-540-45014-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000204280
115 https://doi.org/10.1007/3-540-45014-9_1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-540-44871-6_130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021308019
118 https://doi.org/10.1007/978-3-540-44871-6_130
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10044-002-0173-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008265979
121 https://doi.org/10.1007/s10044-002-0173-7
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s100440200030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051088091
124 https://doi.org/10.1007/s100440200030
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10791-005-6994-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018852347
127 https://doi.org/10.1007/s10791-005-6994-4
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
130 https://doi.org/10.1023/a:1010933404324
131 rdf:type schema:CreativeWork
132 sg:pub.10.1023/a:1022859003006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051759842
133 https://doi.org/10.1023/a:1022859003006
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.inffus.2004.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038195032
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.patcog.2005.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012804619
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s1566-2535(02)00051-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005874774
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s1566-2535(02)00094-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046019695
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/095400996116785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005753699
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/34.273716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155945
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/34.58871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156595
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tpami.2003.1159950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742471
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tpami.2005.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742780
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tpami.2005.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742892
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1214/aos/1024691079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024161650
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.256023.0 schema:alternateName Fordham University
160 schema:name Department of Computer and Information Sciences, Fordham University, LL813, 113 West 60th Street, New York, NY 10023, USA
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
163 schema:name Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 300, ROC
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...