Ontology type: schema:Chapter
2007-01-01
AUTHORSWolf-Tilo Balke , Ulrich Güntzer , Christoph Lofi
ABSTRACTToday, result sets of skyline queries are unmanageable due to their exponential growth with the number of query predicates. In this paper we discuss the incremental re-computation of skylines based on additional information elicited from the user. Extending the traditional case of totally ordered domains, we consider preferences in their most general form as strict partial orders of attribute values. After getting an initial skyline set our basic approach aims at interactively increasing the system’s information about the user’s wishes explicitly including indifferences. The additional knowledge then is incorporated into the preference information and constantly reduces skyline sizes. In fact, our approach even allows users to specify trade-offs between different query predicates, thus effectively decreasing the query dimensionality. We give theoretical proof for the soundness and consistence of the extended preference information and an extensive experimental evaluation of the efficiency of our approach. On average, skyline sizes can be considerably decreased in each elicitation step. More... »
PAGES551-562
Advances in Databases: Concepts, Systems and Applications
ISBN
978-3-540-71702-7
978-3-540-71703-4
http://scigraph.springernature.com/pub.10.1007/978-3-540-71703-4_47
DOIhttp://dx.doi.org/10.1007/978-3-540-71703-4_47
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027112080
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "L3S Research Center, Leibniz University Hannover, Appelstr 4, 30167 Hannover, Germany",
"id": "http://www.grid.ac/institutes/grid.507815.e",
"name": [
"L3S Research Center, Leibniz University Hannover, Appelstr 4, 30167 Hannover, Germany"
],
"type": "Organization"
},
"familyName": "Balke",
"givenName": "Wolf-Tilo",
"id": "sg:person.014313642615.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Computer Science, University of T\u00fcbingen, Sand 13, 72076 T\u00fcbingen, Germany",
"id": "http://www.grid.ac/institutes/grid.10392.39",
"name": [
"Institute of Computer Science, University of T\u00fcbingen, Sand 13, 72076 T\u00fcbingen, Germany"
],
"type": "Organization"
},
"familyName": "G\u00fcntzer",
"givenName": "Ulrich",
"id": "sg:person.013324511711.75",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "L3S Research Center, Leibniz University Hannover, Appelstr 4, 30167 Hannover, Germany",
"id": "http://www.grid.ac/institutes/grid.507815.e",
"name": [
"L3S Research Center, Leibniz University Hannover, Appelstr 4, 30167 Hannover, Germany"
],
"type": "Organization"
},
"familyName": "Lofi",
"givenName": "Christoph",
"id": "sg:person.011355173745.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44"
],
"type": "Person"
}
],
"datePublished": "2007-01-01",
"datePublishedReg": "2007-01-01",
"description": "Today, result sets of skyline queries are unmanageable due to their exponential growth with the number of query predicates. In this paper we discuss the incremental re-computation of skylines based on additional information elicited from the user. Extending the traditional case of totally ordered domains, we consider preferences in their most general form as strict partial orders of attribute values. After getting an initial skyline set our basic approach aims at interactively increasing the system\u2019s information about the user\u2019s wishes explicitly including indifferences. The additional knowledge then is incorporated into the preference information and constantly reduces skyline sizes. In fact, our approach even allows users to specify trade-offs between different query predicates, thus effectively decreasing the query dimensionality. We give theoretical proof for the soundness and consistence of the extended preference information and an extensive experimental evaluation of the efficiency of our approach. On average, skyline sizes can be considerably decreased in each elicitation step.",
"editor": [
{
"familyName": "Kotagiri",
"givenName": "Ramamohanarao",
"type": "Person"
},
{
"familyName": "Krishna",
"givenName": "P. Radha",
"type": "Person"
},
{
"familyName": "Mohania",
"givenName": "Mukesh",
"type": "Person"
},
{
"familyName": "Nantajeewarawat",
"givenName": "Ekawit",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-71703-4_47",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-71702-7",
"978-3-540-71703-4"
],
"name": "Advances in Databases: Concepts, Systems and Applications",
"type": "Book"
},
"keywords": [
"skyline sizes",
"query predicates",
"preference information",
"extensive experimental evaluation",
"skyline queries",
"user preferences",
"attribute values",
"strict partial order",
"system information",
"incremental integration",
"elicitation steps",
"experimental evaluation",
"users",
"theoretical proof",
"skyline",
"additional knowledge",
"exponential growth",
"predicates",
"basic approach",
"information",
"partial order",
"queries",
"traditional case",
"additional information",
"dimensionality",
"soundness",
"set",
"integration",
"proof",
"domain",
"today",
"efficiency",
"preferences",
"general form",
"knowledge",
"step",
"order",
"consistence",
"evaluation",
"number",
"size",
"fact",
"form",
"cases",
"values",
"growth",
"indifference",
"approach",
"matter",
"paper"
],
"name": "Eliciting Matters \u2013 Controlling Skyline Sizes by Incremental Integration of User Preferences",
"pagination": "551-562",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027112080"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-71703-4_47"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-71703-4_47",
"https://app.dimensions.ai/details/publication/pub.1027112080"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:43",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_213.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-540-71703-4_47"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71703-4_47'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71703-4_47'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71703-4_47'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71703-4_47'
This table displays all metadata directly associated to this object as RDF triples.
142 TRIPLES
23 PREDICATES
75 URIs
68 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-71703-4_47 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | N025d27f44f1b4c4e87be134ec20d00ec |
4 | ″ | schema:datePublished | 2007-01-01 |
5 | ″ | schema:datePublishedReg | 2007-01-01 |
6 | ″ | schema:description | Today, result sets of skyline queries are unmanageable due to their exponential growth with the number of query predicates. In this paper we discuss the incremental re-computation of skylines based on additional information elicited from the user. Extending the traditional case of totally ordered domains, we consider preferences in their most general form as strict partial orders of attribute values. After getting an initial skyline set our basic approach aims at interactively increasing the system’s information about the user’s wishes explicitly including indifferences. The additional knowledge then is incorporated into the preference information and constantly reduces skyline sizes. In fact, our approach even allows users to specify trade-offs between different query predicates, thus effectively decreasing the query dimensionality. We give theoretical proof for the soundness and consistence of the extended preference information and an extensive experimental evaluation of the efficiency of our approach. On average, skyline sizes can be considerably decreased in each elicitation step. |
7 | ″ | schema:editor | Ncda98dabf26b489fb8a06b7ee4637a79 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nc00be936ba9a43f8a6f9097e49f3a7c8 |
12 | ″ | schema:keywords | additional information |
13 | ″ | ″ | additional knowledge |
14 | ″ | ″ | approach |
15 | ″ | ″ | attribute values |
16 | ″ | ″ | basic approach |
17 | ″ | ″ | cases |
18 | ″ | ″ | consistence |
19 | ″ | ″ | dimensionality |
20 | ″ | ″ | domain |
21 | ″ | ″ | efficiency |
22 | ″ | ″ | elicitation steps |
23 | ″ | ″ | evaluation |
24 | ″ | ″ | experimental evaluation |
25 | ″ | ″ | exponential growth |
26 | ″ | ″ | extensive experimental evaluation |
27 | ″ | ″ | fact |
28 | ″ | ″ | form |
29 | ″ | ″ | general form |
30 | ″ | ″ | growth |
31 | ″ | ″ | incremental integration |
32 | ″ | ″ | indifference |
33 | ″ | ″ | information |
34 | ″ | ″ | integration |
35 | ″ | ″ | knowledge |
36 | ″ | ″ | matter |
37 | ″ | ″ | number |
38 | ″ | ″ | order |
39 | ″ | ″ | paper |
40 | ″ | ″ | partial order |
41 | ″ | ″ | predicates |
42 | ″ | ″ | preference information |
43 | ″ | ″ | preferences |
44 | ″ | ″ | proof |
45 | ″ | ″ | queries |
46 | ″ | ″ | query predicates |
47 | ″ | ″ | set |
48 | ″ | ″ | size |
49 | ″ | ″ | skyline |
50 | ″ | ″ | skyline queries |
51 | ″ | ″ | skyline sizes |
52 | ″ | ″ | soundness |
53 | ″ | ″ | step |
54 | ″ | ″ | strict partial order |
55 | ″ | ″ | system information |
56 | ″ | ″ | theoretical proof |
57 | ″ | ″ | today |
58 | ″ | ″ | traditional case |
59 | ″ | ″ | user preferences |
60 | ″ | ″ | users |
61 | ″ | ″ | values |
62 | ″ | schema:name | Eliciting Matters – Controlling Skyline Sizes by Incremental Integration of User Preferences |
63 | ″ | schema:pagination | 551-562 |
64 | ″ | schema:productId | N163c4593066d428c8688d9c0d92680f5 |
65 | ″ | ″ | N34f18de531154e4180ff88cce313cbbd |
66 | ″ | schema:publisher | N6e7c4b9bffea40d7a40ccae1b506ea01 |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027112080 |
68 | ″ | ″ | https://doi.org/10.1007/978-3-540-71703-4_47 |
69 | ″ | schema:sdDatePublished | 2022-05-20T07:43 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | Nd7f0667872044f1596985d45de90433b |
72 | ″ | schema:url | https://doi.org/10.1007/978-3-540-71703-4_47 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | chapters |
75 | ″ | rdf:type | schema:Chapter |
76 | N025d27f44f1b4c4e87be134ec20d00ec | rdf:first | sg:person.014313642615.12 |
77 | ″ | rdf:rest | N238dca2356f34ce49c5b8497bfe9260a |
78 | N163c4593066d428c8688d9c0d92680f5 | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1027112080 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N1abd83884cfc4d9a9206c7d0ce0957e3 | schema:familyName | Nantajeewarawat |
82 | ″ | schema:givenName | Ekawit |
83 | ″ | rdf:type | schema:Person |
84 | N238dca2356f34ce49c5b8497bfe9260a | rdf:first | sg:person.013324511711.75 |
85 | ″ | rdf:rest | Ndeb684d6c8d24ed58eaedbdce057fd8f |
86 | N34f18de531154e4180ff88cce313cbbd | schema:name | doi |
87 | ″ | schema:value | 10.1007/978-3-540-71703-4_47 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N6e7c4b9bffea40d7a40ccae1b506ea01 | schema:name | Springer Nature |
90 | ″ | rdf:type | schema:Organisation |
91 | N7b6b8e32205d4ce5a4014b7de752389c | schema:familyName | Krishna |
92 | ″ | schema:givenName | P. Radha |
93 | ″ | rdf:type | schema:Person |
94 | N8afea84d2e86443e9308eeb8f55b59ed | rdf:first | N7b6b8e32205d4ce5a4014b7de752389c |
95 | ″ | rdf:rest | Nbc4908f713bd4e76a717785417b9ac3c |
96 | N8cdf79c4464a49c99d4758696face8a1 | schema:familyName | Mohania |
97 | ″ | schema:givenName | Mukesh |
98 | ″ | rdf:type | schema:Person |
99 | N997f4e9ea0eb41dc9ef1cf2f43489367 | schema:familyName | Kotagiri |
100 | ″ | schema:givenName | Ramamohanarao |
101 | ″ | rdf:type | schema:Person |
102 | Nbc4908f713bd4e76a717785417b9ac3c | rdf:first | N8cdf79c4464a49c99d4758696face8a1 |
103 | ″ | rdf:rest | Nc0778371147944058d620ae758f2294c |
104 | Nc00be936ba9a43f8a6f9097e49f3a7c8 | schema:isbn | 978-3-540-71702-7 |
105 | ″ | ″ | 978-3-540-71703-4 |
106 | ″ | schema:name | Advances in Databases: Concepts, Systems and Applications |
107 | ″ | rdf:type | schema:Book |
108 | Nc0778371147944058d620ae758f2294c | rdf:first | N1abd83884cfc4d9a9206c7d0ce0957e3 |
109 | ″ | rdf:rest | rdf:nil |
110 | Ncda98dabf26b489fb8a06b7ee4637a79 | rdf:first | N997f4e9ea0eb41dc9ef1cf2f43489367 |
111 | ″ | rdf:rest | N8afea84d2e86443e9308eeb8f55b59ed |
112 | Nd7f0667872044f1596985d45de90433b | schema:name | Springer Nature - SN SciGraph project |
113 | ″ | rdf:type | schema:Organization |
114 | Ndeb684d6c8d24ed58eaedbdce057fd8f | rdf:first | sg:person.011355173745.44 |
115 | ″ | rdf:rest | rdf:nil |
116 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Information and Computing Sciences |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Information Systems |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | sg:person.011355173745.44 | schema:affiliation | grid-institutes:grid.507815.e |
123 | ″ | schema:familyName | Lofi |
124 | ″ | schema:givenName | Christoph |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.013324511711.75 | schema:affiliation | grid-institutes:grid.10392.39 |
128 | ″ | schema:familyName | Güntzer |
129 | ″ | schema:givenName | Ulrich |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.014313642615.12 | schema:affiliation | grid-institutes:grid.507815.e |
133 | ″ | schema:familyName | Balke |
134 | ″ | schema:givenName | Wolf-Tilo |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12 |
136 | ″ | rdf:type | schema:Person |
137 | grid-institutes:grid.10392.39 | schema:alternateName | Institute of Computer Science, University of Tübingen, Sand 13, 72076 Tübingen, Germany |
138 | ″ | schema:name | Institute of Computer Science, University of Tübingen, Sand 13, 72076 Tübingen, Germany |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.507815.e | schema:alternateName | L3S Research Center, Leibniz University Hannover, Appelstr 4, 30167 Hannover, Germany |
141 | ″ | schema:name | L3S Research Center, Leibniz University Hannover, Appelstr 4, 30167 Hannover, Germany |
142 | ″ | rdf:type | schema:Organization |