A Hybrid Incremental Clustering Method-Combining Support Vector Machine and Enhanced Clustering by Committee Clustering Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Deng-Yiv Chiu , Kong-Ling Hsieh

ABSTRACT

In the study, a new hybrid incremental clustering method is proposed in combination with Support Vector Machine (SVM) and enhanced Clustering by Committee (CBC) algorithm. SVM classifies the incoming document to see if it belongs to the existing classes. Then the enhanced CBC algorithm is used to cluster the unclassified documents. SVM can significantly reduce the amount of calculation and the noise of clustering. The enhanced CBC algorithm can effectively control the number of clusters, improve performance and allow the number of classes to grow gradually based on the structure of current classes without clustering all of documents again. In empirical results, the proposed method outperforms the enhanced CBC clustering method and other algorithms. Also, the enhanced CBC clustering method outperforms original CBC. More... »

PAGES

465-472

Book

TITLE

Advances in Knowledge Discovery and Data Mining

ISBN

978-3-540-71700-3
978-3-540-71701-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-71701-0_47

DOI

http://dx.doi.org/10.1007/978-3-540-71701-0_47

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051056930


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Information Management, ChungHua University, Hsin-Chu,300, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Information Management, ChungHua University, Hsin-Chu,300, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiu", 
        "givenName": "Deng-Yiv", 
        "id": "sg:person.014715043551.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715043551.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information Management, ChungHua University, Hsin-Chu,300, Taiwan, R.O.C.", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Information Management, ChungHua University, Hsin-Chu,300, Taiwan, R.O.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsieh", 
        "givenName": "Kong-Ling", 
        "type": "Person"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "In the study, a new hybrid incremental clustering method is proposed in combination with Support Vector Machine (SVM) and enhanced Clustering by Committee (CBC) algorithm. SVM classifies the incoming document to see if it belongs to the existing classes. Then the enhanced CBC algorithm is used to cluster the unclassified documents. SVM can significantly reduce the amount of calculation and the noise of clustering. The enhanced CBC algorithm can effectively control the number of clusters, improve performance and allow the number of classes to grow gradually based on the structure of current classes without clustering all of documents again. In empirical results, the proposed method outperforms the enhanced CBC clustering method and other algorithms. Also, the enhanced CBC clustering method outperforms original CBC.", 
    "editor": [
      {
        "familyName": "Zhou", 
        "givenName": "Zhi-Hua", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Hang", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Qiang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-71701-0_47", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-71700-3", 
        "978-3-540-71701-0"
      ], 
      "name": "Advances in Knowledge Discovery and Data Mining", 
      "type": "Book"
    }, 
    "keywords": [
      "support vector machine", 
      "incremental clustering method", 
      "clustering method", 
      "vector machine", 
      "CBC algorithm", 
      "number of clusters", 
      "incoming documents", 
      "number of classes", 
      "clustering algorithm", 
      "amount of calculation", 
      "unclassified documents", 
      "algorithm", 
      "committee algorithm", 
      "documents", 
      "machine", 
      "clustering", 
      "empirical results", 
      "enhanced clustering", 
      "current class", 
      "method", 
      "class", 
      "noise", 
      "performance", 
      "number", 
      "clusters", 
      "results", 
      "amount", 
      "combination", 
      "structure", 
      "CBC", 
      "calculations", 
      "study", 
      "new hybrid incremental clustering method", 
      "hybrid incremental clustering method", 
      "enhanced CBC clustering method", 
      "CBC clustering method", 
      "original CBC", 
      "Committee Clustering Algorithm"
    ], 
    "name": "A Hybrid Incremental Clustering Method-Combining Support Vector Machine and Enhanced Clustering by Committee Clustering Algorithm", 
    "pagination": "465-472", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051056930"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-71701-0_47"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-71701-0_47", 
      "https://app.dimensions.ai/details/publication/pub.1051056930"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_226.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-71701-0_47"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71701-0_47'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71701-0_47'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71701-0_47'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71701-0_47'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-71701-0_47 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N148ad55633644ea2ac8c8b2b4ff0ee79
4 schema:datePublished 2007
5 schema:datePublishedReg 2007-01-01
6 schema:description In the study, a new hybrid incremental clustering method is proposed in combination with Support Vector Machine (SVM) and enhanced Clustering by Committee (CBC) algorithm. SVM classifies the incoming document to see if it belongs to the existing classes. Then the enhanced CBC algorithm is used to cluster the unclassified documents. SVM can significantly reduce the amount of calculation and the noise of clustering. The enhanced CBC algorithm can effectively control the number of clusters, improve performance and allow the number of classes to grow gradually based on the structure of current classes without clustering all of documents again. In empirical results, the proposed method outperforms the enhanced CBC clustering method and other algorithms. Also, the enhanced CBC clustering method outperforms original CBC.
7 schema:editor N0d4893953a2c43cc82848f19a4835fda
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N500ef4fa82ce4211a1ab96314dbfdf15
12 schema:keywords CBC
13 CBC algorithm
14 CBC clustering method
15 Committee Clustering Algorithm
16 algorithm
17 amount
18 amount of calculation
19 calculations
20 class
21 clustering
22 clustering algorithm
23 clustering method
24 clusters
25 combination
26 committee algorithm
27 current class
28 documents
29 empirical results
30 enhanced CBC clustering method
31 enhanced clustering
32 hybrid incremental clustering method
33 incoming documents
34 incremental clustering method
35 machine
36 method
37 new hybrid incremental clustering method
38 noise
39 number
40 number of classes
41 number of clusters
42 original CBC
43 performance
44 results
45 structure
46 study
47 support vector machine
48 unclassified documents
49 vector machine
50 schema:name A Hybrid Incremental Clustering Method-Combining Support Vector Machine and Enhanced Clustering by Committee Clustering Algorithm
51 schema:pagination 465-472
52 schema:productId Na9bd0cc0f2fc4325a7936c6d00ea21ab
53 Nd98175b1e5ab4e1c9bc3698165232dfb
54 schema:publisher N25c7d92463b446f79b2027aa833584eb
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051056930
56 https://doi.org/10.1007/978-3-540-71701-0_47
57 schema:sdDatePublished 2021-12-01T20:00
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N55692ff220d4484f932b5af29dbe9e89
60 schema:url https://doi.org/10.1007/978-3-540-71701-0_47
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N0d4893953a2c43cc82848f19a4835fda rdf:first N73f703a390d24b76b7fadf90f9fa061d
65 rdf:rest N1bc9d8947f8e4a639e4e7d7f1f9207e1
66 N148ad55633644ea2ac8c8b2b4ff0ee79 rdf:first sg:person.014715043551.58
67 rdf:rest N42ff72936ee145df99586dbe0564c5ad
68 N1bc9d8947f8e4a639e4e7d7f1f9207e1 rdf:first N5f8569873ff3483a82141a6617b62a0f
69 rdf:rest N4cc9b153217e4e538c4fc5d3fd0cee9d
70 N25c7d92463b446f79b2027aa833584eb schema:name Springer Nature
71 rdf:type schema:Organisation
72 N42ff72936ee145df99586dbe0564c5ad rdf:first N8f6cc98264ec412e8922d7828cc8e5fe
73 rdf:rest rdf:nil
74 N4cc9b153217e4e538c4fc5d3fd0cee9d rdf:first Nbdd3b7e25fa2456489b65d893b808e29
75 rdf:rest rdf:nil
76 N500ef4fa82ce4211a1ab96314dbfdf15 schema:isbn 978-3-540-71700-3
77 978-3-540-71701-0
78 schema:name Advances in Knowledge Discovery and Data Mining
79 rdf:type schema:Book
80 N55692ff220d4484f932b5af29dbe9e89 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N5f8569873ff3483a82141a6617b62a0f schema:familyName Li
83 schema:givenName Hang
84 rdf:type schema:Person
85 N73f703a390d24b76b7fadf90f9fa061d schema:familyName Zhou
86 schema:givenName Zhi-Hua
87 rdf:type schema:Person
88 N8f6cc98264ec412e8922d7828cc8e5fe schema:affiliation grid-institutes:grid.411655.2
89 schema:familyName Hsieh
90 schema:givenName Kong-Ling
91 rdf:type schema:Person
92 Na9bd0cc0f2fc4325a7936c6d00ea21ab schema:name dimensions_id
93 schema:value pub.1051056930
94 rdf:type schema:PropertyValue
95 Nbdd3b7e25fa2456489b65d893b808e29 schema:familyName Yang
96 schema:givenName Qiang
97 rdf:type schema:Person
98 Nd98175b1e5ab4e1c9bc3698165232dfb schema:name doi
99 schema:value 10.1007/978-3-540-71701-0_47
100 rdf:type schema:PropertyValue
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:person.014715043551.58 schema:affiliation grid-institutes:grid.411655.2
108 schema:familyName Chiu
109 schema:givenName Deng-Yiv
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715043551.58
111 rdf:type schema:Person
112 grid-institutes:grid.411655.2 schema:alternateName Department of Information Management, ChungHua University, Hsin-Chu,300, Taiwan, R.O.C.
113 schema:name Department of Information Management, ChungHua University, Hsin-Chu,300, Taiwan, R.O.C.
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...