A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Thomas Schmickl , Karl Crailsheim

ABSTRACT

This article presents a novel bio-inspired navigation principle for swarm robotics that is based on a technique of signal propagation that was inspired by slime mold. We evaluated this strategy in a variety of simulation experiments that simulates a collective cleaning scenario. This scenario includes several sub-tasks like exploration, information propagation and path finding. Using the slime mold-inspired strategy, the simulated robots successfully performed a collective cleaning scenario and showed the ability of finding the shortest path between two target places. Finally, the parameters of the strategy were optimized by artificial evolution and the discovered optima are discussed. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-71541-2_1

DOI

http://dx.doi.org/10.1007/978-3-540-71541-2_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040572979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department for Zoology, Karl-Franzens-University Graz, Universitaetsplatz 2, A-8010 Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5110.5", 
          "name": [
            "Department for Zoology, Karl-Franzens-University Graz, Universitaetsplatz 2, A-8010 Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmickl", 
        "givenName": "Thomas", 
        "id": "sg:person.07417426760.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417426760.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department for Zoology, Karl-Franzens-University Graz, Universitaetsplatz 2, A-8010 Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5110.5", 
          "name": [
            "Department for Zoology, Karl-Franzens-University Graz, Universitaetsplatz 2, A-8010 Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crailsheim", 
        "givenName": "Karl", 
        "id": "sg:person.01366315645.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "This article presents a novel bio-inspired navigation principle for swarm robotics that is based on a technique of signal propagation that was inspired by slime mold. We evaluated this strategy in a variety of simulation experiments that simulates a collective cleaning scenario. This scenario includes several sub-tasks like exploration, information propagation and path finding. Using the slime mold-inspired strategy, the simulated robots successfully performed a collective cleaning scenario and showed the ability of finding the shortest path between two target places. Finally, the parameters of the strategy were optimized by artificial evolution and the discovered optima are discussed.", 
    "editor": [
      {
        "familyName": "\u015eahin", 
        "givenName": "Erol", 
        "type": "Person"
      }, 
      {
        "familyName": "Spears", 
        "givenName": "William M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Winfield", 
        "givenName": "Alan F. T.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-71541-2_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-71540-5", 
        "978-3-540-71541-2"
      ], 
      "name": "Swarm Robotics", 
      "type": "Book"
    }, 
    "keywords": [
      "swarm robotics", 
      "cleaning scenario", 
      "navigation algorithm", 
      "path finding", 
      "information propagation", 
      "artificial evolution", 
      "navigation principles", 
      "shortest path", 
      "simulation experiments", 
      "robotics", 
      "target place", 
      "slime mold aggregation", 
      "scenarios", 
      "robot", 
      "algorithm", 
      "signal propagation", 
      "path", 
      "strategies", 
      "optimum", 
      "technique", 
      "exploration", 
      "slime mold", 
      "experiments", 
      "principles", 
      "variety", 
      "propagation", 
      "aggregation", 
      "ability", 
      "article", 
      "parameters", 
      "place", 
      "evolution", 
      "findings", 
      "mold"
    ], 
    "name": "A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040572979"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-71541-2_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-71541-2_1", 
      "https://app.dimensions.ai/details/publication/pub.1040572979"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_30.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-71541-2_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71541-2_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71541-2_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71541-2_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-71541-2_1'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      22 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-71541-2_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ned1f3c3359b043d69c986a794c62dc4f
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description This article presents a novel bio-inspired navigation principle for swarm robotics that is based on a technique of signal propagation that was inspired by slime mold. We evaluated this strategy in a variety of simulation experiments that simulates a collective cleaning scenario. This scenario includes several sub-tasks like exploration, information propagation and path finding. Using the slime mold-inspired strategy, the simulated robots successfully performed a collective cleaning scenario and showed the ability of finding the shortest path between two target places. Finally, the parameters of the strategy were optimized by artificial evolution and the discovered optima are discussed.
7 schema:editor Nd82ed0dd5ab24b51ae51d9439fa8b47b
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nfa5e43cb42774613beb32b90b3dc801f
11 schema:keywords ability
12 aggregation
13 algorithm
14 article
15 artificial evolution
16 cleaning scenario
17 evolution
18 experiments
19 exploration
20 findings
21 information propagation
22 mold
23 navigation algorithm
24 navigation principles
25 optimum
26 parameters
27 path
28 path finding
29 place
30 principles
31 propagation
32 robot
33 robotics
34 scenarios
35 shortest path
36 signal propagation
37 simulation experiments
38 slime mold
39 slime mold aggregation
40 strategies
41 swarm robotics
42 target place
43 technique
44 variety
45 schema:name A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation
46 schema:pagination 1-13
47 schema:productId N42656d2d9b7340a7b2276bced137d9ba
48 Nbc43e65a950d48ef86af0317734f8353
49 schema:publisher Nbd60544b9ce04bf2ab954a153138dd1e
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040572979
51 https://doi.org/10.1007/978-3-540-71541-2_1
52 schema:sdDatePublished 2022-12-01T06:50
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N7175501bf7c146be9064a5b25dd037fc
55 schema:url https://doi.org/10.1007/978-3-540-71541-2_1
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N3496318eb1bc45cfab90b6e37820276e schema:familyName Winfield
60 schema:givenName Alan F. T.
61 rdf:type schema:Person
62 N42656d2d9b7340a7b2276bced137d9ba schema:name doi
63 schema:value 10.1007/978-3-540-71541-2_1
64 rdf:type schema:PropertyValue
65 N7175501bf7c146be9064a5b25dd037fc schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N7ce489ccdbab49aaa0e8d60d7532b761 schema:familyName Şahin
68 schema:givenName Erol
69 rdf:type schema:Person
70 Nb7b204b114094d8ca2e41155442d6cca rdf:first N3496318eb1bc45cfab90b6e37820276e
71 rdf:rest rdf:nil
72 Nbc43e65a950d48ef86af0317734f8353 schema:name dimensions_id
73 schema:value pub.1040572979
74 rdf:type schema:PropertyValue
75 Nbd60544b9ce04bf2ab954a153138dd1e schema:name Springer Nature
76 rdf:type schema:Organisation
77 Ncbd9d4fb0c1342e196cf8c3768337836 rdf:first Neb81169999744ddfa4b00b77dfabf0dc
78 rdf:rest Nb7b204b114094d8ca2e41155442d6cca
79 Nd82ed0dd5ab24b51ae51d9439fa8b47b rdf:first N7ce489ccdbab49aaa0e8d60d7532b761
80 rdf:rest Ncbd9d4fb0c1342e196cf8c3768337836
81 Ne192a3116b8f48dc8226373e3dcf1341 rdf:first sg:person.01366315645.25
82 rdf:rest rdf:nil
83 Neb81169999744ddfa4b00b77dfabf0dc schema:familyName Spears
84 schema:givenName William M.
85 rdf:type schema:Person
86 Ned1f3c3359b043d69c986a794c62dc4f rdf:first sg:person.07417426760.84
87 rdf:rest Ne192a3116b8f48dc8226373e3dcf1341
88 Nfa5e43cb42774613beb32b90b3dc801f schema:isbn 978-3-540-71540-5
89 978-3-540-71541-2
90 schema:name Swarm Robotics
91 rdf:type schema:Book
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:person.01366315645.25 schema:affiliation grid-institutes:grid.5110.5
99 schema:familyName Crailsheim
100 schema:givenName Karl
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25
102 rdf:type schema:Person
103 sg:person.07417426760.84 schema:affiliation grid-institutes:grid.5110.5
104 schema:familyName Schmickl
105 schema:givenName Thomas
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417426760.84
107 rdf:type schema:Person
108 grid-institutes:grid.5110.5 schema:alternateName Department for Zoology, Karl-Franzens-University Graz, Universitaetsplatz 2, A-8010 Graz, Austria
109 schema:name Department for Zoology, Karl-Franzens-University Graz, Universitaetsplatz 2, A-8010 Graz, Austria
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...