Contour Determination in Ultrasound Medical Images Using Interacting Multiple Model Probabilistic Data Association Filter View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Pavlina Konstantinova , Dan Adam , Donka Angelova , Vera Behar

ABSTRACT

The Probabilistic Data Association Filter (PDAF) with Interacting Multiple Model (IMM) approach is applied for contour determination in ultrasound images. The contour of interest is assumed to be a target trajectory which is tracked using IMMPDA filtering. The target movement is assumed to be along a circle and controlled by equally spaced radii from an arbitrary seed point inside the assumed contour. The generalized scores of the candidate points along current radius are determined on the base of two components - the Gaussian probability density function, associated with the assignment of the current point to the trajectory and the edge magnitude. A method for modeling complex contours with known true positions and method for error evaluation are proposed. These methods are used to generate Field II images and to estimate errors of contour determination using IMMPDA algorithm incorporating edge magnitude. More... »

PAGES

628-636

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_76

DOI

http://dx.doi.org/10.1007/978-3-540-70942-8_76

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043644665


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev St, 1113 Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev St, 1113 Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konstantinova", 
        "givenName": "Pavlina", 
        "id": "sg:person.01074404701.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074404701.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomedical Engineering, Technion-Israel Institute of Technology, Hajfa 32000, Israel", 
          "id": "http://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Biomedical Engineering, Technion-Israel Institute of Technology, Hajfa 32000, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adam", 
        "givenName": "Dan", 
        "id": "sg:person.0710217220.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710217220.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev St, 1113 Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev St, 1113 Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Angelova", 
        "givenName": "Donka", 
        "id": "sg:person.013252546723.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252546723.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev St, 1113 Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev St, 1113 Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Behar", 
        "givenName": "Vera", 
        "id": "sg:person.014512504451.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512504451.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "The Probabilistic Data Association Filter (PDAF) with Interacting Multiple Model (IMM) approach is applied for contour determination in ultrasound images. The contour of interest is assumed to be a target trajectory which is tracked using IMMPDA filtering. The target movement is assumed to be along a circle and controlled by equally spaced radii from an arbitrary seed point inside the assumed contour. The generalized scores of the candidate points along current radius are determined on the base of two components - the Gaussian probability density function, associated with the assignment of the current point to the trajectory and the edge magnitude. A method for modeling complex contours with known true positions and method for error evaluation are proposed. These methods are used to generate Field II images and to estimate errors of contour determination using IMMPDA algorithm incorporating edge magnitude.", 
    "editor": [
      {
        "familyName": "Boyanov", 
        "givenName": "Todor", 
        "type": "Person"
      }, 
      {
        "familyName": "Dimova", 
        "givenName": "Stefka", 
        "type": "Person"
      }, 
      {
        "familyName": "Georgiev", 
        "givenName": "Krassimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Nikolov", 
        "givenName": "Geno", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-70942-8_76", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-70940-4", 
        "978-3-540-70942-8"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "probabilistic data association filter", 
      "data association filter", 
      "multiple model probabilistic data association filter", 
      "multiple model approach", 
      "Gaussian probability density function", 
      "probability density function", 
      "contour of interest", 
      "density function", 
      "error evaluation", 
      "ultrasound medical images", 
      "generalized score", 
      "current radius", 
      "complex contours", 
      "current point", 
      "model approach", 
      "candidate points", 
      "edge magnitude", 
      "filter", 
      "target movement", 
      "filtering", 
      "algorithm", 
      "point", 
      "contour determination", 
      "error", 
      "medical images", 
      "true position", 
      "approach", 
      "function", 
      "circle", 
      "assignment", 
      "contours", 
      "interest", 
      "radius", 
      "determination", 
      "seed points", 
      "magnitude", 
      "components", 
      "images", 
      "evaluation", 
      "position", 
      "base", 
      "ultrasound images", 
      "movement", 
      "target", 
      "method", 
      "scores", 
      "Association Filter", 
      "IMMPDA filtering", 
      "arbitrary seed point", 
      "Field II images", 
      "II images", 
      "IMMPDA algorithm", 
      "Model Probabilistic Data Association Filter"
    ], 
    "name": "Contour Determination in Ultrasound Medical Images Using Interacting Multiple Model Probabilistic Data Association Filter", 
    "pagination": "628-636", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043644665"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-70942-8_76"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-70942-8_76", 
      "https://app.dimensions.ai/details/publication/pub.1043644665"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_35.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-70942-8_76"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_76'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_76'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_76'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_76'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-70942-8_76 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nac8d44885644456f87d7bc165cafca0a
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description The Probabilistic Data Association Filter (PDAF) with Interacting Multiple Model (IMM) approach is applied for contour determination in ultrasound images. The contour of interest is assumed to be a target trajectory which is tracked using IMMPDA filtering. The target movement is assumed to be along a circle and controlled by equally spaced radii from an arbitrary seed point inside the assumed contour. The generalized scores of the candidate points along current radius are determined on the base of two components - the Gaussian probability density function, associated with the assignment of the current point to the trajectory and the edge magnitude. A method for modeling complex contours with known true positions and method for error evaluation are proposed. These methods are used to generate Field II images and to estimate errors of contour determination using IMMPDA algorithm incorporating edge magnitude.
7 schema:editor N0d3fdb15766c4734ac33f8cd0616ae96
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nbc55f125581346cc8a54179e9c4e8a0d
12 schema:keywords Association Filter
13 Field II images
14 Gaussian probability density function
15 II images
16 IMMPDA algorithm
17 IMMPDA filtering
18 Model Probabilistic Data Association Filter
19 algorithm
20 approach
21 arbitrary seed point
22 assignment
23 base
24 candidate points
25 circle
26 complex contours
27 components
28 contour determination
29 contour of interest
30 contours
31 current point
32 current radius
33 data association filter
34 density function
35 determination
36 edge magnitude
37 error
38 error evaluation
39 evaluation
40 filter
41 filtering
42 function
43 generalized score
44 images
45 interest
46 magnitude
47 medical images
48 method
49 model approach
50 movement
51 multiple model approach
52 multiple model probabilistic data association filter
53 point
54 position
55 probabilistic data association filter
56 probability density function
57 radius
58 scores
59 seed points
60 target
61 target movement
62 true position
63 ultrasound images
64 ultrasound medical images
65 schema:name Contour Determination in Ultrasound Medical Images Using Interacting Multiple Model Probabilistic Data Association Filter
66 schema:pagination 628-636
67 schema:productId N74bd9f71a50042d08b86d23c7339be4d
68 N96431d55279c4b8d9c6d77a839a63c1a
69 schema:publisher N995ddd8bfae14adda161bea9f14da707
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043644665
71 https://doi.org/10.1007/978-3-540-70942-8_76
72 schema:sdDatePublished 2022-01-01T19:20
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N5788b20e02a84ebb8f29a6afb4c3cb94
75 schema:url https://doi.org/10.1007/978-3-540-70942-8_76
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N0d3fdb15766c4734ac33f8cd0616ae96 rdf:first N5fcc839838774c2e877aafa6f82c20ff
80 rdf:rest N0f05f75102d44cefa8f7207caf5685f0
81 N0f05f75102d44cefa8f7207caf5685f0 rdf:first N6e0daffcb0ee4f9b8f04393fc39b0df6
82 rdf:rest Ncb176939f87f44d2a1524639ab0a3c98
83 N2c3b3fe4a2cd409c86d4b2c738af0954 schema:familyName Georgiev
84 schema:givenName Krassimir
85 rdf:type schema:Person
86 N4e7dec4e0136432b895d634e67afa85f schema:familyName Nikolov
87 schema:givenName Geno
88 rdf:type schema:Person
89 N55d2cc5506454e7283ad1d2dce4b0d12 rdf:first sg:person.013252546723.32
90 rdf:rest Ne7b7824cb9e54237a4aba9b8d91b75f1
91 N5788b20e02a84ebb8f29a6afb4c3cb94 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N5fcc839838774c2e877aafa6f82c20ff schema:familyName Boyanov
94 schema:givenName Todor
95 rdf:type schema:Person
96 N69bc38d554e34510b26a6d19718a8f23 rdf:first N4e7dec4e0136432b895d634e67afa85f
97 rdf:rest rdf:nil
98 N6e0daffcb0ee4f9b8f04393fc39b0df6 schema:familyName Dimova
99 schema:givenName Stefka
100 rdf:type schema:Person
101 N74bd9f71a50042d08b86d23c7339be4d schema:name dimensions_id
102 schema:value pub.1043644665
103 rdf:type schema:PropertyValue
104 N96431d55279c4b8d9c6d77a839a63c1a schema:name doi
105 schema:value 10.1007/978-3-540-70942-8_76
106 rdf:type schema:PropertyValue
107 N995ddd8bfae14adda161bea9f14da707 schema:name Springer Nature
108 rdf:type schema:Organisation
109 Nac8d44885644456f87d7bc165cafca0a rdf:first sg:person.01074404701.26
110 rdf:rest Neb5b5fbb8cc64a48b6f67f96f5a04a23
111 Nbc55f125581346cc8a54179e9c4e8a0d schema:isbn 978-3-540-70940-4
112 978-3-540-70942-8
113 schema:name Numerical Methods and Applications
114 rdf:type schema:Book
115 Ncb176939f87f44d2a1524639ab0a3c98 rdf:first N2c3b3fe4a2cd409c86d4b2c738af0954
116 rdf:rest N69bc38d554e34510b26a6d19718a8f23
117 Ne7b7824cb9e54237a4aba9b8d91b75f1 rdf:first sg:person.014512504451.48
118 rdf:rest rdf:nil
119 Neb5b5fbb8cc64a48b6f67f96f5a04a23 rdf:first sg:person.0710217220.55
120 rdf:rest N55d2cc5506454e7283ad1d2dce4b0d12
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 sg:person.01074404701.26 schema:affiliation grid-institutes:grid.424859.6
128 schema:familyName Konstantinova
129 schema:givenName Pavlina
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074404701.26
131 rdf:type schema:Person
132 sg:person.013252546723.32 schema:affiliation grid-institutes:grid.424859.6
133 schema:familyName Angelova
134 schema:givenName Donka
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013252546723.32
136 rdf:type schema:Person
137 sg:person.014512504451.48 schema:affiliation grid-institutes:grid.424859.6
138 schema:familyName Behar
139 schema:givenName Vera
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512504451.48
141 rdf:type schema:Person
142 sg:person.0710217220.55 schema:affiliation grid-institutes:grid.6451.6
143 schema:familyName Adam
144 schema:givenName Dan
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710217220.55
146 rdf:type schema:Person
147 grid-institutes:grid.424859.6 schema:alternateName Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev St, 1113 Sofia, Bulgaria
148 schema:name Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A Acad. G. Bonchev St, 1113 Sofia, Bulgaria
149 rdf:type schema:Organization
150 grid-institutes:grid.6451.6 schema:alternateName Department of Biomedical Engineering, Technion-Israel Institute of Technology, Hajfa 32000, Israel
151 schema:name Department of Biomedical Engineering, Technion-Israel Institute of Technology, Hajfa 32000, Israel
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...