Sparse Array Optimization by Using the Simulated Annealing Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Vera Behar , Milen Nikolov

ABSTRACT

Sparse synthetic transmit aperture (STA) imaging systems are a good alternative to the conventional phased array systems. Unfortunately, the sparse STA imaging systems suffer from some limitations, which can be overcome with a proper design. In order to do so, a simulated annealing algorithm, combined with an effective approach can used for optimization of a sparse STA ultrasound imaging system. In this paper, three two-stage algorithms for optimization of both the positions of the transmit sub-apertures and the weights of the receive elements are considered and studied. The first stage of the optimization employs a simulated annealing algorithm that optimizes the locations of the transmit sub-aperture centers for a set of weighting functions. Three optimization criteria used at this stage of optimization are studied and compared. The first two criteria are conventional. The third criterion, proposed in this paper, combines the first two criteria. At the second stage of optimization, an appropriate weighting function for the receive elements is selected.The sparse STA system under study employs a 64-element array, where all elements are used in receive and six sub-apertures are used in transmit. Compared to a conventional phased array imaging system, this system acquires images of better quality 21 times faster than an equivalent phased array system. More... »

PAGES

223-230

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_26

DOI

http://dx.doi.org/10.1007/978-3-540-70942-8_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020018049


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, \u201cAcad. G. Bonchev\u201d Str., bl. 25-A, 1113 Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, \u201cAcad. G. Bonchev\u201d Str., bl. 25-A, 1113 Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Behar", 
        "givenName": "Vera", 
        "id": "sg:person.014512504451.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512504451.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, \u201cAcad. G. Bonchev\u201d Str., bl. 25-A, 1113 Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, \u201cAcad. G. Bonchev\u201d Str., bl. 25-A, 1113 Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolov", 
        "givenName": "Milen", 
        "id": "sg:person.012125134057.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012125134057.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "Sparse synthetic transmit aperture (STA) imaging systems are a good alternative to the conventional phased array systems. Unfortunately, the sparse STA imaging systems suffer from some limitations, which can be overcome with a proper design. In order to do so, a simulated annealing algorithm, combined with an effective approach can used for optimization of a sparse STA ultrasound imaging system. In this paper, three two-stage algorithms for optimization of both the positions of the transmit sub-apertures and the weights of the receive elements are considered and studied. The first stage of the optimization employs a simulated annealing algorithm that optimizes the locations of the transmit sub-aperture centers for a set of weighting functions. Three optimization criteria used at this stage of optimization are studied and compared. The first two criteria are conventional. The third criterion, proposed in this paper, combines the first two criteria. At the second stage of optimization, an appropriate weighting function for the receive elements is selected.The sparse STA system under study employs a 64-element array, where all elements are used in receive and six sub-apertures are used in transmit. Compared to a conventional phased array imaging system, this system acquires images of better quality 21 times faster than an equivalent phased array system.", 
    "editor": [
      {
        "familyName": "Boyanov", 
        "givenName": "Todor", 
        "type": "Person"
      }, 
      {
        "familyName": "Dimova", 
        "givenName": "Stefka", 
        "type": "Person"
      }, 
      {
        "familyName": "Georgiev", 
        "givenName": "Krassimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Nikolov", 
        "givenName": "Geno", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-70942-8_26", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-70940-4", 
        "978-3-540-70942-8"
      ], 
      "name": "Numerical Methods and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "Sparse Array Optimization", 
      "array system", 
      "ultrasound imaging system", 
      "receive elements", 
      "imaging system", 
      "appropriate weighting functions", 
      "proper design", 
      "STA system", 
      "array imaging system", 
      "stages of optimization", 
      "aperture imaging system", 
      "array optimization", 
      "annealing algorithm", 
      "weighting functions", 
      "optimization", 
      "simulated annealing algorithm", 
      "optimization criteria", 
      "first stage", 
      "second stage", 
      "effective approach", 
      "good alternative", 
      "system", 
      "two-stage algorithm", 
      "elements", 
      "transmit", 
      "algorithm", 
      "design", 
      "array", 
      "receive", 
      "order", 
      "third criterion", 
      "stage", 
      "alternative", 
      "location", 
      "images", 
      "criteria", 
      "limitations", 
      "time", 
      "approach", 
      "position", 
      "function", 
      "STA", 
      "set", 
      "study", 
      "center", 
      "weight", 
      "paper", 
      "Sparse synthetic transmit aperture (STA) imaging systems", 
      "synthetic transmit aperture (STA) imaging systems", 
      "transmit aperture (STA) imaging systems", 
      "sparse STA", 
      "sparse STA ultrasound imaging system", 
      "STA ultrasound imaging system", 
      "transmit sub-aperture centers", 
      "sub-aperture centers", 
      "sparse STA system", 
      "better quality 21 times", 
      "quality 21 times"
    ], 
    "name": "Sparse Array Optimization by Using the Simulated Annealing Algorithm", 
    "pagination": "223-230", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020018049"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-70942-8_26"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-70942-8_26", 
      "https://app.dimensions.ai/details/publication/pub.1020018049"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_52.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-70942-8_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70942-8_26'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-70942-8_26 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Ne68d65a1a6bb4ef5843b3b43a15c37da
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description Sparse synthetic transmit aperture (STA) imaging systems are a good alternative to the conventional phased array systems. Unfortunately, the sparse STA imaging systems suffer from some limitations, which can be overcome with a proper design. In order to do so, a simulated annealing algorithm, combined with an effective approach can used for optimization of a sparse STA ultrasound imaging system. In this paper, three two-stage algorithms for optimization of both the positions of the transmit sub-apertures and the weights of the receive elements are considered and studied. The first stage of the optimization employs a simulated annealing algorithm that optimizes the locations of the transmit sub-aperture centers for a set of weighting functions. Three optimization criteria used at this stage of optimization are studied and compared. The first two criteria are conventional. The third criterion, proposed in this paper, combines the first two criteria. At the second stage of optimization, an appropriate weighting function for the receive elements is selected.The sparse STA system under study employs a 64-element array, where all elements are used in receive and six sub-apertures are used in transmit. Compared to a conventional phased array imaging system, this system acquires images of better quality 21 times faster than an equivalent phased array system.
7 schema:editor Ne72c93ca7a3c443584ab15381496db0f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8325d1d0bfc24ded809e096e37509411
12 schema:keywords STA
13 STA system
14 STA ultrasound imaging system
15 Sparse Array Optimization
16 Sparse synthetic transmit aperture (STA) imaging systems
17 algorithm
18 alternative
19 annealing algorithm
20 aperture imaging system
21 approach
22 appropriate weighting functions
23 array
24 array imaging system
25 array optimization
26 array system
27 better quality 21 times
28 center
29 criteria
30 design
31 effective approach
32 elements
33 first stage
34 function
35 good alternative
36 images
37 imaging system
38 limitations
39 location
40 optimization
41 optimization criteria
42 order
43 paper
44 position
45 proper design
46 quality 21 times
47 receive
48 receive elements
49 second stage
50 set
51 simulated annealing algorithm
52 sparse STA
53 sparse STA system
54 sparse STA ultrasound imaging system
55 stage
56 stages of optimization
57 study
58 sub-aperture centers
59 synthetic transmit aperture (STA) imaging systems
60 system
61 third criterion
62 time
63 transmit
64 transmit aperture (STA) imaging systems
65 transmit sub-aperture centers
66 two-stage algorithm
67 ultrasound imaging system
68 weight
69 weighting functions
70 schema:name Sparse Array Optimization by Using the Simulated Annealing Algorithm
71 schema:pagination 223-230
72 schema:productId N90c8039c8ca943c1a2a08209f0c8f54b
73 Neb915aa6f02f465980b73451124c7c8b
74 schema:publisher Nd83bbada25fd42f9976c557c0e7eca07
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020018049
76 https://doi.org/10.1007/978-3-540-70942-8_26
77 schema:sdDatePublished 2022-01-01T19:26
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nf96b4b6e41404ad5a422ba906af50f51
80 schema:url https://doi.org/10.1007/978-3-540-70942-8_26
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N17459015fddc41a2a2b898d00a7a4954 schema:familyName Boyanov
85 schema:givenName Todor
86 rdf:type schema:Person
87 N39793e5e69e84f9c90247959b0d75368 rdf:first sg:person.012125134057.05
88 rdf:rest rdf:nil
89 N6af71f385055468e956798e1a161f549 schema:familyName Nikolov
90 schema:givenName Geno
91 rdf:type schema:Person
92 N6fb0ab2da0784466bbec10cd0c894dcb schema:familyName Georgiev
93 schema:givenName Krassimir
94 rdf:type schema:Person
95 N8325d1d0bfc24ded809e096e37509411 schema:isbn 978-3-540-70940-4
96 978-3-540-70942-8
97 schema:name Numerical Methods and Applications
98 rdf:type schema:Book
99 N90c8039c8ca943c1a2a08209f0c8f54b schema:name dimensions_id
100 schema:value pub.1020018049
101 rdf:type schema:PropertyValue
102 Na72931f669c24e1c8006112111b9ad1f schema:familyName Dimova
103 schema:givenName Stefka
104 rdf:type schema:Person
105 Nb257ad36b9614a1287c748f807db4804 rdf:first N6fb0ab2da0784466bbec10cd0c894dcb
106 rdf:rest Nd609baa73ff44c79b292d32b103f6431
107 Nd609baa73ff44c79b292d32b103f6431 rdf:first N6af71f385055468e956798e1a161f549
108 rdf:rest rdf:nil
109 Nd6e22b6a7ec14e9eb12f7ce3ec31d67d rdf:first Na72931f669c24e1c8006112111b9ad1f
110 rdf:rest Nb257ad36b9614a1287c748f807db4804
111 Nd83bbada25fd42f9976c557c0e7eca07 schema:name Springer Nature
112 rdf:type schema:Organisation
113 Ne68d65a1a6bb4ef5843b3b43a15c37da rdf:first sg:person.014512504451.48
114 rdf:rest N39793e5e69e84f9c90247959b0d75368
115 Ne72c93ca7a3c443584ab15381496db0f rdf:first N17459015fddc41a2a2b898d00a7a4954
116 rdf:rest Nd6e22b6a7ec14e9eb12f7ce3ec31d67d
117 Neb915aa6f02f465980b73451124c7c8b schema:name doi
118 schema:value 10.1007/978-3-540-70942-8_26
119 rdf:type schema:PropertyValue
120 Nf96b4b6e41404ad5a422ba906af50f51 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
123 schema:name Mathematical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
126 schema:name Numerical and Computational Mathematics
127 rdf:type schema:DefinedTerm
128 sg:person.012125134057.05 schema:affiliation grid-institutes:grid.424859.6
129 schema:familyName Nikolov
130 schema:givenName Milen
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012125134057.05
132 rdf:type schema:Person
133 sg:person.014512504451.48 schema:affiliation grid-institutes:grid.424859.6
134 schema:familyName Behar
135 schema:givenName Vera
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512504451.48
137 rdf:type schema:Person
138 grid-institutes:grid.424859.6 schema:alternateName Institute for Parallel Processing, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., bl. 25-A, 1113 Sofia, Bulgaria
139 schema:name Institute for Parallel Processing, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str., bl. 25-A, 1113 Sofia, Bulgaria
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...