Multi Criteria Decision Aiding Techniques to Select Designs After Robust Design Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Mattia Ciprian , Valentino Pediroda , Carlo Poloni

ABSTRACT

Robust Design Optimization is the most appropriate approach to face problems characterized by uncertainties on operating conditions, which are peculiarity of aeronautical research activities. The Robust Design methodology illustrated in this paper is based on multi-objective approach. When a Pareto approach is used, a Multi Criteria Decision Method is needed for selecting the final optimal solution. This method is tested on an aeronautic case: the design of a transonic airfoil with uncertainties on free Mach number and angle of attack. The final solution is compared with a well known airfoil: the new design performs as the original one , especially concerning lift and drag stability. More... »

PAGES

619-632

References to SciGraph publications

  • 2003-10. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, 30 August – 1 September 2004 in STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
  • 1998. Multiple Criteria Decision Support in Engineering Design in NONE
  • 2005. Multi Objective Robust Design Optimization of Airfoils in Transonic Field in MULTIDISCIPLINARY METHODS FOR ANALYSIS OPTIMIZATION AND CONTROL OF COMPLEX SYSTEMS
  • Book

    TITLE

    Evolutionary Multi-Criterion Optimization

    ISBN

    978-3-540-70927-5
    978-3-540-70928-2

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-70928-2_47

    DOI

    http://dx.doi.org/10.1007/978-3-540-70928-2_47

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050488429


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Trieste", 
              "id": "https://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Department of Mechanical Engineering, University of Trieste, Trieste, 34100, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ciprian", 
            "givenName": "Mattia", 
            "id": "sg:person.012066421701.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012066421701.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trieste", 
              "id": "https://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Department of Mechanical Engineering, University of Trieste, Trieste, 34100, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pediroda", 
            "givenName": "Valentino", 
            "id": "sg:person.014256743301.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014256743301.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trieste", 
              "id": "https://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Department of Mechanical Engineering, University of Trieste, Trieste, 34100, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poloni", 
            "givenName": "Carlo", 
            "id": "sg:person.013417222033.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417222033.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/00207547808930043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016324811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-27167-8_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023405670", 
              "https://doi.org/10.1007/3-540-27167-8_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/6.2003-3790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031565519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/3.12761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032675078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-003-0349-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032809143", 
              "https://doi.org/10.1007/s00158-003-0349-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00158-003-0349-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032809143", 
              "https://doi.org/10.1007/s00158-003-0349-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0377-2217(02)00227-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033828584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1040513327", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-3020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040513327", 
              "https://doi.org/10.1007/978-1-4471-3020-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-3020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040513327", 
              "https://doi.org/10.1007/978-1-4471-3020-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ss/1177012413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064409909"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007", 
        "datePublishedReg": "2007-01-01", 
        "description": "Robust Design Optimization is the most appropriate approach to face problems characterized by uncertainties on operating conditions, which are peculiarity of aeronautical research activities. The Robust Design methodology illustrated in this paper is based on multi-objective approach. When a Pareto approach is used, a Multi Criteria Decision Method is needed for selecting the final optimal solution. This method is tested on an aeronautic case: the design of a transonic airfoil with uncertainties on free Mach number and angle of attack. The final solution is compared with a well known airfoil: the new design performs as the original one , especially concerning lift and drag stability.", 
        "editor": [
          {
            "familyName": "Obayashi", 
            "givenName": "Shigeru", 
            "type": "Person"
          }, 
          {
            "familyName": "Deb", 
            "givenName": "Kalyanmoy", 
            "type": "Person"
          }, 
          {
            "familyName": "Poloni", 
            "givenName": "Carlo", 
            "type": "Person"
          }, 
          {
            "familyName": "Hiroyasu", 
            "givenName": "Tomoyuki", 
            "type": "Person"
          }, 
          {
            "familyName": "Murata", 
            "givenName": "Tadahiko", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-70928-2_47", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-70927-5", 
            "978-3-540-70928-2"
          ], 
          "name": "Evolutionary Multi-Criterion Optimization", 
          "type": "Book"
        }, 
        "name": "Multi Criteria Decision Aiding Techniques to Select Designs After Robust Design Optimization", 
        "pagination": "619-632", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-70928-2_47"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f082c2435136129c2103437f1d7d8fc96e0e31443057cb90d1415d90cca40328"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050488429"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-70928-2_47", 
          "https://app.dimensions.ai/details/publication/pub.1050488429"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000274.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-540-70928-2_47"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70928-2_47'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70928-2_47'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70928-2_47'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70928-2_47'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-70928-2_47 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N6bfc078f68814f66bc2b146787178aa6
    4 schema:citation sg:pub.10.1007/3-540-27167-8_9
    5 sg:pub.10.1007/978-1-4471-3020-8
    6 sg:pub.10.1007/s00158-003-0349-9
    7 https://app.dimensions.ai/details/publication/pub.1040513327
    8 https://doi.org/10.1016/s0377-2217(02)00227-8
    9 https://doi.org/10.1080/00207547808930043
    10 https://doi.org/10.1214/ss/1177012413
    11 https://doi.org/10.2514/3.12761
    12 https://doi.org/10.2514/6.2003-3790
    13 schema:datePublished 2007
    14 schema:datePublishedReg 2007-01-01
    15 schema:description Robust Design Optimization is the most appropriate approach to face problems characterized by uncertainties on operating conditions, which are peculiarity of aeronautical research activities. The Robust Design methodology illustrated in this paper is based on multi-objective approach. When a Pareto approach is used, a Multi Criteria Decision Method is needed for selecting the final optimal solution. This method is tested on an aeronautic case: the design of a transonic airfoil with uncertainties on free Mach number and angle of attack. The final solution is compared with a well known airfoil: the new design performs as the original one , especially concerning lift and drag stability.
    16 schema:editor N56313bfef5b34fdab252b7193eb57616
    17 schema:genre chapter
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N260e2b0f79f74e7ebc86e5c75dc02b10
    21 schema:name Multi Criteria Decision Aiding Techniques to Select Designs After Robust Design Optimization
    22 schema:pagination 619-632
    23 schema:productId N8d0bb7db11614e0a9a49df3e8db5cb1a
    24 N8d5386c3ad61468bb4163b84d167074e
    25 Nedce7d9a4f8b4ffe886e04002caa81dd
    26 schema:publisher Ne9cfbe84e5ec4381b16a266d843545c2
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050488429
    28 https://doi.org/10.1007/978-3-540-70928-2_47
    29 schema:sdDatePublished 2019-04-15T16:20
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N3a44452fbd694bacb3b05446333d936b
    32 schema:url http://link.springer.com/10.1007/978-3-540-70928-2_47
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset chapters
    35 rdf:type schema:Chapter
    36 N012cda1275bd4e3bb9e60a8dc3ba0db7 rdf:first Nacd17024303246788991519c9522b922
    37 rdf:rest rdf:nil
    38 N03b9137c91234853bbcc43127579ea34 schema:familyName Deb
    39 schema:givenName Kalyanmoy
    40 rdf:type schema:Person
    41 N0910b0067b914347a60a4c546918d429 schema:familyName Hiroyasu
    42 schema:givenName Tomoyuki
    43 rdf:type schema:Person
    44 N1d817cb852644f15bd18893fa7c991d2 rdf:first sg:person.014256743301.51
    45 rdf:rest Nde957e48dc2a4a058b5c43d4a5f7a2e9
    46 N260e2b0f79f74e7ebc86e5c75dc02b10 schema:isbn 978-3-540-70927-5
    47 978-3-540-70928-2
    48 schema:name Evolutionary Multi-Criterion Optimization
    49 rdf:type schema:Book
    50 N3a44452fbd694bacb3b05446333d936b schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N3ffc0b13a2a6410aa66efc2de8acc065 schema:familyName Obayashi
    53 schema:givenName Shigeru
    54 rdf:type schema:Person
    55 N56313bfef5b34fdab252b7193eb57616 rdf:first N3ffc0b13a2a6410aa66efc2de8acc065
    56 rdf:rest Ndb97f8bd79844a66b30a6c7958621550
    57 N6bfc078f68814f66bc2b146787178aa6 rdf:first sg:person.012066421701.12
    58 rdf:rest N1d817cb852644f15bd18893fa7c991d2
    59 N8d0bb7db11614e0a9a49df3e8db5cb1a schema:name dimensions_id
    60 schema:value pub.1050488429
    61 rdf:type schema:PropertyValue
    62 N8d5386c3ad61468bb4163b84d167074e schema:name readcube_id
    63 schema:value f082c2435136129c2103437f1d7d8fc96e0e31443057cb90d1415d90cca40328
    64 rdf:type schema:PropertyValue
    65 Na1eaf0eadc0e44b6a039019f503e8d08 schema:familyName Poloni
    66 schema:givenName Carlo
    67 rdf:type schema:Person
    68 Na76becbf3e324174bb0aa7c671ace6df rdf:first Na1eaf0eadc0e44b6a039019f503e8d08
    69 rdf:rest Nfeeaeee1bece4f4bbfa67ebcab371e06
    70 Nacd17024303246788991519c9522b922 schema:familyName Murata
    71 schema:givenName Tadahiko
    72 rdf:type schema:Person
    73 Ndb97f8bd79844a66b30a6c7958621550 rdf:first N03b9137c91234853bbcc43127579ea34
    74 rdf:rest Na76becbf3e324174bb0aa7c671ace6df
    75 Nde957e48dc2a4a058b5c43d4a5f7a2e9 rdf:first sg:person.013417222033.24
    76 rdf:rest rdf:nil
    77 Ne9cfbe84e5ec4381b16a266d843545c2 schema:location Berlin, Heidelberg
    78 schema:name Springer Berlin Heidelberg
    79 rdf:type schema:Organisation
    80 Nedce7d9a4f8b4ffe886e04002caa81dd schema:name doi
    81 schema:value 10.1007/978-3-540-70928-2_47
    82 rdf:type schema:PropertyValue
    83 Nfeeaeee1bece4f4bbfa67ebcab371e06 rdf:first N0910b0067b914347a60a4c546918d429
    84 rdf:rest N012cda1275bd4e3bb9e60a8dc3ba0db7
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Numerical and Computational Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:person.012066421701.12 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
    92 schema:familyName Ciprian
    93 schema:givenName Mattia
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012066421701.12
    95 rdf:type schema:Person
    96 sg:person.013417222033.24 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
    97 schema:familyName Poloni
    98 schema:givenName Carlo
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417222033.24
    100 rdf:type schema:Person
    101 sg:person.014256743301.51 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
    102 schema:familyName Pediroda
    103 schema:givenName Valentino
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014256743301.51
    105 rdf:type schema:Person
    106 sg:pub.10.1007/3-540-27167-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023405670
    107 https://doi.org/10.1007/3-540-27167-8_9
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/978-1-4471-3020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040513327
    110 https://doi.org/10.1007/978-1-4471-3020-8
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s00158-003-0349-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032809143
    113 https://doi.org/10.1007/s00158-003-0349-9
    114 rdf:type schema:CreativeWork
    115 https://app.dimensions.ai/details/publication/pub.1040513327 schema:CreativeWork
    116 https://doi.org/10.1016/s0377-2217(02)00227-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033828584
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1080/00207547808930043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016324811
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1214/ss/1177012413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409909
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.2514/3.12761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032675078
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.2514/6.2003-3790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031565519
    125 rdf:type schema:CreativeWork
    126 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
    127 schema:name Department of Mechanical Engineering, University of Trieste, Trieste, 34100, Italy
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...