Topology-Based Flow Visualization, The State of the Art View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Robert S. Laramee , Helwig Hauser , Lingxiao Zhao , Frits H. Post

ABSTRACT

Flow visualization research has made rapid advances in recent years, especially in the area of topology-based flow visualization. The ever increasing size of scientific data sets favors algorithms that are capable of extracting important subsets of the data, leaving the scientist with a more manageable representation that may be visualized interactively. Extracting the topology of a flow achieves the goal of obtaining a compact representation of a vector or tensor field while simultaneously retaining its most important features. We present the state of the art in topology-based flow visualization techniques. We outline numerous topology-based algorithms categorized according to the type and dimensionality of data on which they operate and according to the goal-oriented nature of each method. Topology tracking algorithms are also discussed. The result serves as a useful introduction and overview to research literature concerned with the study of topology-based flow visualization. More... »

PAGES

1-19

Book

TITLE

Topology-based Methods in Visualization

ISBN

978-3-540-70822-3
978-3-540-70823-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-70823-0_1

DOI

http://dx.doi.org/10.1007/978-3-540-70823-0_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010785810


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swansea University", 
          "id": "https://www.grid.ac/institutes/grid.4827.9", 
          "name": [
            "Department of Computer Science, Swansea University, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laramee", 
        "givenName": "Robert S.", 
        "id": "sg:person.013747544527.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747544527.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "VRVis Research Center, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hauser", 
        "givenName": "Helwig", 
        "id": "sg:person.0650261337.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650261337.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swansea University", 
          "id": "https://www.grid.ac/institutes/grid.4827.9", 
          "name": [
            "Department of Computer Science, Swansea University, UK", 
            "VRVis Research Center, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Lingxiao", 
        "id": "sg:person.01260541035.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260541035.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swansea University", 
          "id": "https://www.grid.ac/institutes/grid.4827.9", 
          "name": [
            "Department of Computer Science, Swansea University, UK", 
            "VRVis Research Center, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Post", 
        "givenName": "Frits H.", 
        "id": "sg:person.0641232240.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641232240.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0097-8493(02)00056-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001251487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-012387582-2/50019-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002229931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8659.t01-1-00710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006822780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(00)00028-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018093255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6215-6_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022383018", 
          "https://doi.org/10.1007/978-3-7091-6215-6_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6215-6_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022383018", 
          "https://doi.org/10.1007/978-3-7091-6215-6_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(00)00029-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024700951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6803-5_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031661606", 
          "https://doi.org/10.1007/978-3-7091-6803-5_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8659.00625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031804269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00013399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034105074", 
          "https://doi.org/10.1007/pl00013399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2003.00723.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037915580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8659.00539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039998659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.25224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041060362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2004.00778.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044068019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(83)90094-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046982390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112095000462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053768453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.35197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.468404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.582332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.694953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.773805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.928168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.689668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.79452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2004.1260771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2004.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2005.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2005.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2004.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093297473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2004.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093386098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2005.1532839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093428097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2002.1183786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093510175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2001.964507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093589939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2000.885714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093690862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1994.346326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093794821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2005.1532773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093820026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1994.346327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093948649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2003.1250356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094075355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2005.1532850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094119346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1999.809896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094179339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2005.1532851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094270096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2005.1532841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094336427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2004.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094344233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2004.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094451698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1999.809863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094583294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2005.1532770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094782478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1999.809865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094831519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2004.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094877395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1995.480795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094918372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1997.663909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094926515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2004.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095054218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2003.1250365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095217485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1998.745296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095402308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2000.885716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095406343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2005.1532840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095433440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1999.809907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095517208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2003.1250376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095524166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1998.745297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095534536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2004.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095540061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1996.568137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095566979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2005.1532842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095664912"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "Flow visualization research has made rapid advances in recent years, especially in the area of topology-based flow visualization. The ever increasing size of scientific data sets favors algorithms that are capable of extracting important subsets of the data, leaving the scientist with a more manageable representation that may be visualized interactively. Extracting the topology of a flow achieves the goal of obtaining a compact representation of a vector or tensor field while simultaneously retaining its most important features. We present the state of the art in topology-based flow visualization techniques. We outline numerous topology-based algorithms categorized according to the type and dimensionality of data on which they operate and according to the goal-oriented nature of each method. Topology tracking algorithms are also discussed. The result serves as a useful introduction and overview to research literature concerned with the study of topology-based flow visualization.", 
    "editor": [
      {
        "familyName": "Hauser", 
        "givenName": "Helwig", 
        "type": "Person"
      }, 
      {
        "familyName": "Hagen", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Theisel", 
        "givenName": "Holger", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-70823-0_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-70822-3", 
        "978-3-540-70823-0"
      ], 
      "name": "Topology-based Methods in Visualization", 
      "type": "Book"
    }, 
    "name": "Topology-Based Flow Visualization, The State of the Art", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010785810"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-70823-0_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33625bb8b2ae1c1cedb517da22b8c9114e1b78413a8c3c5c93c93bdb7e641dc5"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-70823-0_1", 
      "https://app.dimensions.ai/details/publication/pub.1010785810"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53027_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-70823-0_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70823-0_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70823-0_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70823-0_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70823-0_1'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      23 PREDICATES      87 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-70823-0_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N194a845836a048ff9206ce7f16a3d6cb
4 schema:citation sg:pub.10.1007/978-3-7091-6215-6_12
5 sg:pub.10.1007/978-3-7091-6803-5_5
6 sg:pub.10.1007/pl00013399
7 https://doi.org/10.1016/0734-189x(83)90094-4
8 https://doi.org/10.1016/b978-012387582-2/50019-8
9 https://doi.org/10.1016/s0097-8493(00)00028-5
10 https://doi.org/10.1016/s0097-8493(00)00029-7
11 https://doi.org/10.1016/s0097-8493(02)00056-0
12 https://doi.org/10.1017/s0022112095000462
13 https://doi.org/10.1109/2.35197
14 https://doi.org/10.1109/2945.468404
15 https://doi.org/10.1109/2945.582332
16 https://doi.org/10.1109/2945.694953
17 https://doi.org/10.1109/2945.773805
18 https://doi.org/10.1109/2945.928168
19 https://doi.org/10.1109/38.689668
20 https://doi.org/10.1109/38.79452
21 https://doi.org/10.1109/tvcg.2004.1260771
22 https://doi.org/10.1109/tvcg.2004.3
23 https://doi.org/10.1109/tvcg.2005.67
24 https://doi.org/10.1109/tvcg.2005.68
25 https://doi.org/10.1109/visual.1994.346326
26 https://doi.org/10.1109/visual.1994.346327
27 https://doi.org/10.1109/visual.1995.480795
28 https://doi.org/10.1109/visual.1996.568137
29 https://doi.org/10.1109/visual.1997.663909
30 https://doi.org/10.1109/visual.1998.745296
31 https://doi.org/10.1109/visual.1998.745297
32 https://doi.org/10.1109/visual.1999.809863
33 https://doi.org/10.1109/visual.1999.809865
34 https://doi.org/10.1109/visual.1999.809896
35 https://doi.org/10.1109/visual.1999.809907
36 https://doi.org/10.1109/visual.2000.885714
37 https://doi.org/10.1109/visual.2000.885716
38 https://doi.org/10.1109/visual.2001.964507
39 https://doi.org/10.1109/visual.2002.1183786
40 https://doi.org/10.1109/visual.2003.1250356
41 https://doi.org/10.1109/visual.2003.1250365
42 https://doi.org/10.1109/visual.2003.1250376
43 https://doi.org/10.1109/visual.2004.105
44 https://doi.org/10.1109/visual.2004.106
45 https://doi.org/10.1109/visual.2004.107
46 https://doi.org/10.1109/visual.2004.113
47 https://doi.org/10.1109/visual.2004.3
48 https://doi.org/10.1109/visual.2004.59
49 https://doi.org/10.1109/visual.2004.99
50 https://doi.org/10.1109/visual.2005.1532770
51 https://doi.org/10.1109/visual.2005.1532773
52 https://doi.org/10.1109/visual.2005.1532839
53 https://doi.org/10.1109/visual.2005.1532840
54 https://doi.org/10.1109/visual.2005.1532841
55 https://doi.org/10.1109/visual.2005.1532842
56 https://doi.org/10.1109/visual.2005.1532850
57 https://doi.org/10.1109/visual.2005.1532851
58 https://doi.org/10.1111/1467-8659.00539
59 https://doi.org/10.1111/1467-8659.00625
60 https://doi.org/10.1111/1467-8659.t01-1-00710
61 https://doi.org/10.1111/j.1467-8659.2003.00723.x
62 https://doi.org/10.1111/j.1467-8659.2004.00778.x
63 https://doi.org/10.2514/3.25224
64 schema:datePublished 2007
65 schema:datePublishedReg 2007-01-01
66 schema:description Flow visualization research has made rapid advances in recent years, especially in the area of topology-based flow visualization. The ever increasing size of scientific data sets favors algorithms that are capable of extracting important subsets of the data, leaving the scientist with a more manageable representation that may be visualized interactively. Extracting the topology of a flow achieves the goal of obtaining a compact representation of a vector or tensor field while simultaneously retaining its most important features. We present the state of the art in topology-based flow visualization techniques. We outline numerous topology-based algorithms categorized according to the type and dimensionality of data on which they operate and according to the goal-oriented nature of each method. Topology tracking algorithms are also discussed. The result serves as a useful introduction and overview to research literature concerned with the study of topology-based flow visualization.
67 schema:editor Ne82e4efd61ee48fd88ef4c572fabc8ab
68 schema:genre chapter
69 schema:inLanguage en
70 schema:isAccessibleForFree true
71 schema:isPartOf N1f61cd5e70694df5b94d704966853c6b
72 schema:name Topology-Based Flow Visualization, The State of the Art
73 schema:pagination 1-19
74 schema:productId N7b8015e89e984337bac65684b4921cef
75 N85b62e1d179341de8a412c29e5184bf3
76 Nb38f6d82cdca42e1a67e8b65d67d8160
77 schema:publisher Nbb3c5c79da0e4a21b8109e4cb6336b37
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010785810
79 https://doi.org/10.1007/978-3-540-70823-0_1
80 schema:sdDatePublished 2019-04-16T07:27
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N798ea305c557490ab189f0f8035d033a
83 schema:url https://link.springer.com/10.1007%2F978-3-540-70823-0_1
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N194a845836a048ff9206ce7f16a3d6cb rdf:first sg:person.013747544527.26
88 rdf:rest Nc5af62006c3e49b4bf8b46382dd51ba9
89 N1f61cd5e70694df5b94d704966853c6b schema:isbn 978-3-540-70822-3
90 978-3-540-70823-0
91 schema:name Topology-based Methods in Visualization
92 rdf:type schema:Book
93 N4d9e9e0f0a264ebf913d1c4eb8315fcd schema:familyName Theisel
94 schema:givenName Holger
95 rdf:type schema:Person
96 N5d962edd38bb47c4be30abb2671f7490 rdf:first sg:person.0641232240.19
97 rdf:rest rdf:nil
98 N798ea305c557490ab189f0f8035d033a schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N7b8015e89e984337bac65684b4921cef schema:name readcube_id
101 schema:value 33625bb8b2ae1c1cedb517da22b8c9114e1b78413a8c3c5c93c93bdb7e641dc5
102 rdf:type schema:PropertyValue
103 N85b62e1d179341de8a412c29e5184bf3 schema:name doi
104 schema:value 10.1007/978-3-540-70823-0_1
105 rdf:type schema:PropertyValue
106 N8fa3e2a281f3456496acaa69e8df0ff7 rdf:first N4d9e9e0f0a264ebf913d1c4eb8315fcd
107 rdf:rest rdf:nil
108 N9a4abe7a63aa42f1ac38026e4776f931 schema:familyName Hauser
109 schema:givenName Helwig
110 rdf:type schema:Person
111 Nb38f6d82cdca42e1a67e8b65d67d8160 schema:name dimensions_id
112 schema:value pub.1010785810
113 rdf:type schema:PropertyValue
114 Nb425efe34ef849d9ad2933eee65417af rdf:first Nc6dc9fccb0f34a358c8550ad347f1c83
115 rdf:rest N8fa3e2a281f3456496acaa69e8df0ff7
116 Nbb3c5c79da0e4a21b8109e4cb6336b37 schema:location Berlin, Heidelberg
117 schema:name Springer Berlin Heidelberg
118 rdf:type schema:Organisation
119 Nc5af62006c3e49b4bf8b46382dd51ba9 rdf:first sg:person.0650261337.87
120 rdf:rest Nfad7fdb53d464c1992eaef69dae1997d
121 Nc6dc9fccb0f34a358c8550ad347f1c83 schema:familyName Hagen
122 schema:givenName Hans
123 rdf:type schema:Person
124 Ne82e4efd61ee48fd88ef4c572fabc8ab rdf:first N9a4abe7a63aa42f1ac38026e4776f931
125 rdf:rest Nb425efe34ef849d9ad2933eee65417af
126 Nfad7fdb53d464c1992eaef69dae1997d rdf:first sg:person.01260541035.48
127 rdf:rest N5d962edd38bb47c4be30abb2671f7490
128 Nfec5539c769d493e816f5ff334d44ad7 schema:name VRVis Research Center, Vienna, Austria
129 rdf:type schema:Organization
130 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information and Computing Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
134 schema:name Artificial Intelligence and Image Processing
135 rdf:type schema:DefinedTerm
136 sg:person.01260541035.48 schema:affiliation https://www.grid.ac/institutes/grid.4827.9
137 schema:familyName Zhao
138 schema:givenName Lingxiao
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260541035.48
140 rdf:type schema:Person
141 sg:person.013747544527.26 schema:affiliation https://www.grid.ac/institutes/grid.4827.9
142 schema:familyName Laramee
143 schema:givenName Robert S.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747544527.26
145 rdf:type schema:Person
146 sg:person.0641232240.19 schema:affiliation https://www.grid.ac/institutes/grid.4827.9
147 schema:familyName Post
148 schema:givenName Frits H.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641232240.19
150 rdf:type schema:Person
151 sg:person.0650261337.87 schema:affiliation Nfec5539c769d493e816f5ff334d44ad7
152 schema:familyName Hauser
153 schema:givenName Helwig
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650261337.87
155 rdf:type schema:Person
156 sg:pub.10.1007/978-3-7091-6215-6_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022383018
157 https://doi.org/10.1007/978-3-7091-6215-6_12
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/978-3-7091-6803-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031661606
160 https://doi.org/10.1007/978-3-7091-6803-5_5
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/pl00013399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034105074
163 https://doi.org/10.1007/pl00013399
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0734-189x(83)90094-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046982390
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/b978-012387582-2/50019-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002229931
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0097-8493(00)00028-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018093255
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0097-8493(00)00029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024700951
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0097-8493(02)00056-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001251487
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1017/s0022112095000462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053768453
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/2.35197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105392
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/2945.468404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146207
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/2945.582332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146249
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/2945.694953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146284
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/2945.773805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146311
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/2945.928168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146363
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/38.689668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164089
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/38.79452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164195
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tvcg.2004.1260771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812445
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tvcg.2004.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812474
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tvcg.2005.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812541
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/tvcg.2005.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812542
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/visual.1994.346326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093794821
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/visual.1994.346327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093948649
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/visual.1995.480795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094918372
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/visual.1996.568137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095566979
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/visual.1997.663909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094926515
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/visual.1998.745296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095402308
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/visual.1998.745297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095534536
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1109/visual.1999.809863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094583294
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/visual.1999.809865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094831519
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/visual.1999.809896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094179339
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/visual.1999.809907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095517208
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/visual.2000.885714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093690862
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/visual.2000.885716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095406343
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/visual.2001.964507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093589939
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/visual.2002.1183786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093510175
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1109/visual.2003.1250356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094075355
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1109/visual.2003.1250365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095217485
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1109/visual.2003.1250376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095524166
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1109/visual.2004.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093386098
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1109/visual.2004.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093297473
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/visual.2004.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094877395
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/visual.2004.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094451698
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1109/visual.2004.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095054218
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/visual.2004.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094344233
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1109/visual.2004.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095540061
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1109/visual.2005.1532770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094782478
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1109/visual.2005.1532773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093820026
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/visual.2005.1532839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093428097
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/visual.2005.1532840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095433440
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/visual.2005.1532841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094336427
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/visual.2005.1532842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095664912
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/visual.2005.1532850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094119346
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1109/visual.2005.1532851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094270096
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1111/1467-8659.00539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039998659
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1111/1467-8659.00625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031804269
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1111/1467-8659.t01-1-00710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006822780
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1111/j.1467-8659.2003.00723.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037915580
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1111/j.1467-8659.2004.00778.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044068019
276 rdf:type schema:CreativeWork
277 https://doi.org/10.2514/3.25224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041060362
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.4827.9 schema:alternateName Swansea University
280 schema:name Department of Computer Science, Swansea University, UK
281 VRVis Research Center, Vienna, Austria
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...