A Concise Course on Stochastic Partial Differential Equations View Full Text


Ontology type: schema:Book     


Book Info

DATE

2007

GENRE

Book

PUBLISHER

Springer Nature

ABSTRACT

These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the case where the noise term is given by a stochastic integral w.r.t. a cylindrical Wiener process.But all results can be easily generalized to SPDE with more general noises such as, for instance, stochastic integral w.r.t. a continuous local martingale. There are basically three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material, such as definitions and results from the theory of Hilbert spaces, are included in appendices. More... »

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-70781-3

DOI

http://dx.doi.org/10.1007/978-3-540-70781-3

ISBN

978-3-540-70780-6 | 978-3-540-70781-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015906782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the case where the noise term is given by a stochastic integral w.r.t. a cylindrical Wiener process.But all results can be easily generalized to SPDE with more general noises such as, for instance, stochastic integral w.r.t. a continuous local martingale. There are basically three approaches to analyze SPDE: the \"martingale measure approach\", the \"mild solution approach\" and the \"variational approach\". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the \"variational approach\". A large part of necessary background material, such as definitions and results from the theory of Hilbert spaces, are included in appendices.", 
    "genre": "book", 
    "id": "sg:pub.10.1007/978-3-540-70781-3", 
    "isAccessibleForFree": false, 
    "isbn": [
      "978-3-540-70780-6", 
      "978-3-540-70781-3"
    ], 
    "keywords": [
      "stochastic partial differential equations", 
      "partial differential equations", 
      "differential equations", 
      "variational approach", 
      "man-made complex systems", 
      "cylindrical Wiener process", 
      "more general noises", 
      "necessary background material", 
      "continuous local martingale", 
      "such equations", 
      "kind of dynamics", 
      "Hilbert space", 
      "Wiener process", 
      "noise term", 
      "general noise", 
      "mild solution approach", 
      "local martingale", 
      "stochastic influences", 
      "solution approach", 
      "measure approach", 
      "evolutionary type", 
      "equations", 
      "complex systems", 
      "background material", 
      "martingales", 
      "approach", 
      "theory", 
      "space", 
      "dynamics", 
      "noise", 
      "appendix", 
      "terms", 
      "technicalities", 
      "results", 
      "system", 
      "instances", 
      "note", 
      "kind", 
      "concise", 
      "definition", 
      "cases", 
      "nature", 
      "large part", 
      "lectures", 
      "introduction", 
      "process", 
      "types", 
      "materials", 
      "part", 
      "influence", 
      "purpose", 
      "course"
    ], 
    "name": "A Concise Course on Stochastic Partial Differential Equations", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015906782"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-70781-3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-70781-3", 
      "https://app.dimensions.ai/details/publication/pub.1015906782"
    ], 
    "sdDataset": "books", 
    "sdDatePublished": "2022-10-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/book/book_19.jsonl", 
    "type": "Book", 
    "url": "https://doi.org/10.1007/978-3-540-70781-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70781-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70781-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70781-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-70781-3'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      19 PREDICATES      77 URIs      68 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-70781-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 anzsrc-for:0104
5 schema:datePublished 2007
6 schema:datePublishedReg 2007-01-01
7 schema:description These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the case where the noise term is given by a stochastic integral w.r.t. a cylindrical Wiener process.But all results can be easily generalized to SPDE with more general noises such as, for instance, stochastic integral w.r.t. a continuous local martingale. There are basically three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material, such as definitions and results from the theory of Hilbert spaces, are included in appendices.
8 schema:genre book
9 schema:isAccessibleForFree false
10 schema:isbn 978-3-540-70780-6
11 978-3-540-70781-3
12 schema:keywords Hilbert space
13 Wiener process
14 appendix
15 approach
16 background material
17 cases
18 complex systems
19 concise
20 continuous local martingale
21 course
22 cylindrical Wiener process
23 definition
24 differential equations
25 dynamics
26 equations
27 evolutionary type
28 general noise
29 influence
30 instances
31 introduction
32 kind
33 kind of dynamics
34 large part
35 lectures
36 local martingale
37 man-made complex systems
38 martingales
39 materials
40 measure approach
41 mild solution approach
42 more general noises
43 nature
44 necessary background material
45 noise
46 noise term
47 note
48 part
49 partial differential equations
50 process
51 purpose
52 results
53 solution approach
54 space
55 stochastic influences
56 stochastic partial differential equations
57 such equations
58 system
59 technicalities
60 terms
61 theory
62 types
63 variational approach
64 schema:name A Concise Course on Stochastic Partial Differential Equations
65 schema:productId N6496554dfe0e4d3a8047d220feb31611
66 Nfef7e225f3ee43afb99380c09d859d8b
67 schema:publisher Ne5174e380fd2428a80a3ac0122d93521
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015906782
69 https://doi.org/10.1007/978-3-540-70781-3
70 schema:sdDatePublished 2022-10-01T06:51
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nb4c1c84cae084af5811ab9555b74df3e
73 schema:url https://doi.org/10.1007/978-3-540-70781-3
74 sgo:license sg:explorer/license/
75 sgo:sdDataset books
76 rdf:type schema:Book
77 N6496554dfe0e4d3a8047d220feb31611 schema:name doi
78 schema:value 10.1007/978-3-540-70781-3
79 rdf:type schema:PropertyValue
80 Nb4c1c84cae084af5811ab9555b74df3e schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Ne5174e380fd2428a80a3ac0122d93521 schema:name Springer Nature
83 rdf:type schema:Organisation
84 Nfef7e225f3ee43afb99380c09d859d8b schema:name dimensions_id
85 schema:value pub.1015906782
86 rdf:type schema:PropertyValue
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
91 schema:name Pure Mathematics
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
94 schema:name Applied Mathematics
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
97 schema:name Statistics
98 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...