Reliable Geometric Computing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Kurt Mehlhorn

ABSTRACT

Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.

PAGES

111-111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17

DOI

http://dx.doi.org/10.1007/978-3-540-69995-8_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012068073


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Informatik, Saarbr\u00fccken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419528.3", 
          "name": [
            "Max-Planck-Institut f\u00fcr Informatik, Saarbr\u00fccken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehlhorn", 
        "givenName": "Kurt", 
        "id": "sg:person.011757371347.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757371347.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.", 
    "editor": [
      {
        "familyName": "Waldmann", 
        "givenName": "Karl-Heinz", 
        "type": "Person"
      }, 
      {
        "familyName": "Stocker", 
        "givenName": "Ulrike M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-69995-8_17", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-69994-1", 
        "978-3-540-69995-8"
      ], 
      "name": "Operations Research Proceedings 2006", 
      "type": "Book"
    }, 
    "keywords": [
      "non-degenerate inputs", 
      "real computer", 
      "geometric computing", 
      "geometric algorithms", 
      "real RAM", 
      "sense of mathematics", 
      "real numbers", 
      "difficult task", 
      "reliable implementation", 
      "algorithm", 
      "computing", 
      "computer", 
      "mathematics", 
      "input", 
      "task", 
      "implementation", 
      "sense", 
      "number"
    ], 
    "name": "Reliable Geometric Computing", 
    "pagination": "111-111", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012068073"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-69995-8_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-69995-8_17", 
      "https://app.dimensions.ai/details/publication/pub.1012068073"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_16.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-69995-8_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      22 PREDICATES      43 URIs      35 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-69995-8_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 schema:author N6c40b7b5cd35440b8e085cabfc5b4ef2
5 schema:datePublished 2007-01-01
6 schema:datePublishedReg 2007-01-01
7 schema:description Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.
8 schema:editor N419a137167cb48488a0f8898ac70c615
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf N20c533cbfaac4be08f1cfe55e31ad3ae
12 schema:keywords algorithm
13 computer
14 computing
15 difficult task
16 geometric algorithms
17 geometric computing
18 implementation
19 input
20 mathematics
21 non-degenerate inputs
22 number
23 real RAM
24 real computer
25 real numbers
26 reliable implementation
27 sense
28 sense of mathematics
29 task
30 schema:name Reliable Geometric Computing
31 schema:pagination 111-111
32 schema:productId N3fcf4be83eef4fd4821b096d75797e39
33 N87a02951d28b4525afb6f7b7ec4f67c1
34 schema:publisher N531e7976f98c4674aefd1f0636532c85
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012068073
36 https://doi.org/10.1007/978-3-540-69995-8_17
37 schema:sdDatePublished 2022-12-01T06:47
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N28c51d580e244f4282e11c9b0c538eeb
40 schema:url https://doi.org/10.1007/978-3-540-69995-8_17
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N20c533cbfaac4be08f1cfe55e31ad3ae schema:isbn 978-3-540-69994-1
45 978-3-540-69995-8
46 schema:name Operations Research Proceedings 2006
47 rdf:type schema:Book
48 N28c51d580e244f4282e11c9b0c538eeb schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N3fcf4be83eef4fd4821b096d75797e39 schema:name dimensions_id
51 schema:value pub.1012068073
52 rdf:type schema:PropertyValue
53 N419a137167cb48488a0f8898ac70c615 rdf:first N94e0bcb3afd34bf695200c67a7b92957
54 rdf:rest Nec581b8a317a45f3bf0832499294ddc7
55 N531e7976f98c4674aefd1f0636532c85 schema:name Springer Nature
56 rdf:type schema:Organisation
57 N6c40b7b5cd35440b8e085cabfc5b4ef2 rdf:first sg:person.011757371347.43
58 rdf:rest rdf:nil
59 N87a02951d28b4525afb6f7b7ec4f67c1 schema:name doi
60 schema:value 10.1007/978-3-540-69995-8_17
61 rdf:type schema:PropertyValue
62 N94e0bcb3afd34bf695200c67a7b92957 schema:familyName Waldmann
63 schema:givenName Karl-Heinz
64 rdf:type schema:Person
65 Ndbcd4f921a6b49d8ac34a880f6020f80 schema:familyName Stocker
66 schema:givenName Ulrike M.
67 rdf:type schema:Person
68 Nec581b8a317a45f3bf0832499294ddc7 rdf:first Ndbcd4f921a6b49d8ac34a880f6020f80
69 rdf:rest rdf:nil
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
77 schema:name Computation Theory and Mathematics
78 rdf:type schema:DefinedTerm
79 sg:person.011757371347.43 schema:affiliation grid-institutes:grid.419528.3
80 schema:familyName Mehlhorn
81 schema:givenName Kurt
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757371347.43
83 rdf:type schema:Person
84 grid-institutes:grid.419528.3 schema:alternateName Max-Planck-Institut für Informatik, Saarbrücken, Germany
85 schema:name Max-Planck-Institut für Informatik, Saarbrücken, Germany
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...