Reliable Geometric Computing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Kurt Mehlhorn

ABSTRACT

Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.

PAGES

111-111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17

DOI

http://dx.doi.org/10.1007/978-3-540-69995-8_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012068073


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Informatik, Saarbr\u00fccken, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419528.3", 
          "name": [
            "Max-Planck-Institut f\u00fcr Informatik, Saarbr\u00fccken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehlhorn", 
        "givenName": "Kurt", 
        "id": "sg:person.011757371347.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757371347.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.", 
    "editor": [
      {
        "familyName": "Waldmann", 
        "givenName": "Karl-Heinz", 
        "type": "Person"
      }, 
      {
        "familyName": "Stocker", 
        "givenName": "Ulrike M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-69995-8_17", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-69994-1", 
        "978-3-540-69995-8"
      ], 
      "name": "Operations Research Proceedings 2006", 
      "type": "Book"
    }, 
    "keywords": [
      "non-degenerate inputs", 
      "real computer", 
      "geometric computing", 
      "geometric algorithms", 
      "real RAM", 
      "sense of mathematics", 
      "real numbers", 
      "difficult task", 
      "reliable implementation", 
      "algorithm", 
      "computing", 
      "computer", 
      "mathematics", 
      "input", 
      "task", 
      "implementation", 
      "sense", 
      "number"
    ], 
    "name": "Reliable Geometric Computing", 
    "pagination": "111-111", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012068073"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-69995-8_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-69995-8_17", 
      "https://app.dimensions.ai/details/publication/pub.1012068073"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_118.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-69995-8_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69995-8_17'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      22 PREDICATES      43 URIs      35 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-69995-8_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 schema:author N20a55ad3f2eb443fae94dc1390443d7c
5 schema:datePublished 2007-01-01
6 schema:datePublishedReg 2007-01-01
7 schema:description Reliable implementation of geometric algorithms is a notoriously difficult task. Algorithms are usually designed for the Real-RAM, capable of computing with real numbers in the sense of mathematics, and for non-degenerate inputs. But, real computers are not Real-RAMs and inputs are frequently degenerate.
8 schema:editor Nb96f2b10758a4845a4d6da9e4c8db5c2
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf N8386d0ee609e432ca7f80da3b23e4c47
12 schema:keywords algorithm
13 computer
14 computing
15 difficult task
16 geometric algorithms
17 geometric computing
18 implementation
19 input
20 mathematics
21 non-degenerate inputs
22 number
23 real RAM
24 real computer
25 real numbers
26 reliable implementation
27 sense
28 sense of mathematics
29 task
30 schema:name Reliable Geometric Computing
31 schema:pagination 111-111
32 schema:productId N3b00b294ea9c47a8ba67ff38f3353705
33 Nedf6dd5dad524b3ea3e73db7d935963f
34 schema:publisher N8c97822e392b403c995d7832f9955eb1
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012068073
36 https://doi.org/10.1007/978-3-540-69995-8_17
37 schema:sdDatePublished 2022-10-01T06:52
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N16671bcbc8b54ffe9473b14dd5c63a62
40 schema:url https://doi.org/10.1007/978-3-540-69995-8_17
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N13c7d4359413416396f0344ac604694b schema:familyName Waldmann
45 schema:givenName Karl-Heinz
46 rdf:type schema:Person
47 N16671bcbc8b54ffe9473b14dd5c63a62 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N20a55ad3f2eb443fae94dc1390443d7c rdf:first sg:person.011757371347.43
50 rdf:rest rdf:nil
51 N3b00b294ea9c47a8ba67ff38f3353705 schema:name doi
52 schema:value 10.1007/978-3-540-69995-8_17
53 rdf:type schema:PropertyValue
54 N5d80c0d15a3b49979a37e3b0ef82295e schema:familyName Stocker
55 schema:givenName Ulrike M.
56 rdf:type schema:Person
57 N8386d0ee609e432ca7f80da3b23e4c47 schema:isbn 978-3-540-69994-1
58 978-3-540-69995-8
59 schema:name Operations Research Proceedings 2006
60 rdf:type schema:Book
61 N8be7611d48db4dab8d5725d5330d9045 rdf:first N5d80c0d15a3b49979a37e3b0ef82295e
62 rdf:rest rdf:nil
63 N8c97822e392b403c995d7832f9955eb1 schema:name Springer Nature
64 rdf:type schema:Organisation
65 Nb96f2b10758a4845a4d6da9e4c8db5c2 rdf:first N13c7d4359413416396f0344ac604694b
66 rdf:rest N8be7611d48db4dab8d5725d5330d9045
67 Nedf6dd5dad524b3ea3e73db7d935963f schema:name dimensions_id
68 schema:value pub.1012068073
69 rdf:type schema:PropertyValue
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
77 schema:name Computation Theory and Mathematics
78 rdf:type schema:DefinedTerm
79 sg:person.011757371347.43 schema:affiliation grid-institutes:grid.419528.3
80 schema:familyName Mehlhorn
81 schema:givenName Kurt
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757371347.43
83 rdf:type schema:Person
84 grid-institutes:grid.419528.3 schema:alternateName Max-Planck-Institut für Informatik, Saarbrücken, Germany
85 schema:name Max-Planck-Institut für Informatik, Saarbrücken, Germany
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...