Robust MCD-Based Backpropagation Learning Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008-01-01

AUTHORS

Andrzej Rusiecki

ABSTRACT

Training data containing outliers are often a problem for supervised neural networks learning methods that may not always come up with acceptable performance. In this paper a new, robust to outliers learning algorithm, employing the concept of initial data analysis by the MCD (minimum covariance determinant) estimator, is proposed. Results of implementation and simulation of nets trained with the new algorithm and the traditional backpropagation (BP) algorithm and robust Lmls are presented and compared. The better performance and robustness against outliers for the new method are demonstrated. More... »

PAGES

154-163

Book

TITLE

Artificial Intelligence and Soft Computing – ICAISC 2008

ISBN

978-3-540-69572-1
978-3-540-69731-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-69731-2_16

DOI

http://dx.doi.org/10.1007/978-3-540-69731-2_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025709181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wroclaw University of Technology, Wroclaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.7005.2", 
          "name": [
            "Wroclaw University of Technology, Wroclaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rusiecki", 
        "givenName": "Andrzej", 
        "id": "sg:person.016031766473.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031766473.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "Training data containing outliers are often a problem for supervised neural networks learning methods that may not always come up with acceptable performance. In this paper a new, robust to outliers learning algorithm, employing the concept of initial data analysis by the MCD (minimum covariance determinant) estimator, is proposed. Results of implementation and simulation of nets trained with the new algorithm and the traditional backpropagation (BP) algorithm and robust Lmls are presented and compared. The better performance and robustness against outliers for the new method are demonstrated.", 
    "editor": [
      {
        "familyName": "Rutkowski", 
        "givenName": "Leszek", 
        "type": "Person"
      }, 
      {
        "familyName": "Tadeusiewicz", 
        "givenName": "Ryszard", 
        "type": "Person"
      }, 
      {
        "familyName": "Zadeh", 
        "givenName": "Lotfi A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Zurada", 
        "givenName": "Jacek M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-69731-2_16", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-69572-1", 
        "978-3-540-69731-2"
      ], 
      "name": "Artificial Intelligence and Soft Computing \u2013 ICAISC 2008", 
      "type": "Book"
    }, 
    "keywords": [
      "supervised neural network", 
      "traditional backpropagation algorithm", 
      "backpropagation learning algorithm", 
      "learning algorithm", 
      "training data", 
      "neural network", 
      "backpropagation algorithm", 
      "results of implementation", 
      "new algorithm", 
      "algorithm", 
      "acceptable performance", 
      "better performance", 
      "outliers", 
      "MCD estimator", 
      "initial data analysis", 
      "data analysis", 
      "network", 
      "performance", 
      "new method", 
      "implementation", 
      "robustness", 
      "nets", 
      "method", 
      "concept", 
      "simulations", 
      "data", 
      "LML", 
      "estimator", 
      "results", 
      "analysis", 
      "MCD", 
      "paper", 
      "problem"
    ], 
    "name": "Robust MCD-Based Backpropagation Learning Algorithm", 
    "pagination": "154-163", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025709181"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-69731-2_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-69731-2_16", 
      "https://app.dimensions.ai/details/publication/pub.1025709181"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_77.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-69731-2_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69731-2_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69731-2_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69731-2_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69731-2_16'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-69731-2_16 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na38ef4744467406ca5e72e9f3806acc6
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description Training data containing outliers are often a problem for supervised neural networks learning methods that may not always come up with acceptable performance. In this paper a new, robust to outliers learning algorithm, employing the concept of initial data analysis by the MCD (minimum covariance determinant) estimator, is proposed. Results of implementation and simulation of nets trained with the new algorithm and the traditional backpropagation (BP) algorithm and robust Lmls are presented and compared. The better performance and robustness against outliers for the new method are demonstrated.
7 schema:editor Nb0df57a0f40743c88244e23a10cfbd74
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nbc2b1fb967fb4c4fa3a2f3c236a869f3
11 schema:keywords LML
12 MCD
13 MCD estimator
14 acceptable performance
15 algorithm
16 analysis
17 backpropagation algorithm
18 backpropagation learning algorithm
19 better performance
20 concept
21 data
22 data analysis
23 estimator
24 implementation
25 initial data analysis
26 learning algorithm
27 method
28 nets
29 network
30 neural network
31 new algorithm
32 new method
33 outliers
34 paper
35 performance
36 problem
37 results
38 results of implementation
39 robustness
40 simulations
41 supervised neural network
42 traditional backpropagation algorithm
43 training data
44 schema:name Robust MCD-Based Backpropagation Learning Algorithm
45 schema:pagination 154-163
46 schema:productId Nb6482da30da44cdbaa7840e8f84230c9
47 Neb31f8e2cdfd4912a3d4c1af26ee39ad
48 schema:publisher N18ef297060a14feabe92b42ce122bd1c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025709181
50 https://doi.org/10.1007/978-3-540-69731-2_16
51 schema:sdDatePublished 2022-09-02T16:17
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N4308c8e1bb5b477285eb78c885f7e433
54 schema:url https://doi.org/10.1007/978-3-540-69731-2_16
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N088cc986026044b6a1268d343bd11aa8 rdf:first N399baedf9e744c24b5e20bcac5333c50
59 rdf:rest Ne2bf7721e961463fbe2c4e9c6e2d4975
60 N18ef297060a14feabe92b42ce122bd1c schema:name Springer Nature
61 rdf:type schema:Organisation
62 N3909282e140e44dfb940b27bbb8335cf schema:familyName Zadeh
63 schema:givenName Lotfi A.
64 rdf:type schema:Person
65 N399baedf9e744c24b5e20bcac5333c50 schema:familyName Tadeusiewicz
66 schema:givenName Ryszard
67 rdf:type schema:Person
68 N4308c8e1bb5b477285eb78c885f7e433 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N7f5374de066449a085fd7fc6b5f0cc62 rdf:first Ne166aa9f4c144258b3909f76e9a9efc4
71 rdf:rest rdf:nil
72 N8bac5b47214644358edf9a17cb229d88 schema:familyName Rutkowski
73 schema:givenName Leszek
74 rdf:type schema:Person
75 Na38ef4744467406ca5e72e9f3806acc6 rdf:first sg:person.016031766473.38
76 rdf:rest rdf:nil
77 Nb0df57a0f40743c88244e23a10cfbd74 rdf:first N8bac5b47214644358edf9a17cb229d88
78 rdf:rest N088cc986026044b6a1268d343bd11aa8
79 Nb6482da30da44cdbaa7840e8f84230c9 schema:name dimensions_id
80 schema:value pub.1025709181
81 rdf:type schema:PropertyValue
82 Nbc2b1fb967fb4c4fa3a2f3c236a869f3 schema:isbn 978-3-540-69572-1
83 978-3-540-69731-2
84 schema:name Artificial Intelligence and Soft Computing – ICAISC 2008
85 rdf:type schema:Book
86 Ne166aa9f4c144258b3909f76e9a9efc4 schema:familyName Zurada
87 schema:givenName Jacek M.
88 rdf:type schema:Person
89 Ne2bf7721e961463fbe2c4e9c6e2d4975 rdf:first N3909282e140e44dfb940b27bbb8335cf
90 rdf:rest N7f5374de066449a085fd7fc6b5f0cc62
91 Neb31f8e2cdfd4912a3d4c1af26ee39ad schema:name doi
92 schema:value 10.1007/978-3-540-69731-2_16
93 rdf:type schema:PropertyValue
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:person.016031766473.38 schema:affiliation grid-institutes:grid.7005.2
101 schema:familyName Rusiecki
102 schema:givenName Andrzej
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016031766473.38
104 rdf:type schema:Person
105 grid-institutes:grid.7005.2 schema:alternateName Wroclaw University of Technology, Wroclaw, Poland
106 schema:name Wroclaw University of Technology, Wroclaw, Poland
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...