Computational Modeling of Human-Robot Interaction Based on Active Intention Estimation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008-01-01

AUTHORS

Takashi Omori , Ayami Yokoyama , Hiroyuki Okada , Satoru Ishikawa , Yugo Nagata

ABSTRACT

In human interaction with a robot, estimation of the other’s intention is thought of as an indispensable factor for achievement of a precise self action. But estimation of the other’s intention is heavy loaded information processing, and we don’t think humans are always doing it. So, in this paper, we propose a light loaded computational algorithm that achieves human-robot interaction without intention estimation in the self agent. In the method, the self agent assumes the other agent to estimate intention, and searches for an action that is easy to be interpreted by the other agent. We evaluated the effectiveness of the proposed model by computer simulation on a hunter task. This method should be positioned as one of the possible variations of intention-based interaction. More... »

PAGES

185-192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-69162-4_20

DOI

http://dx.doi.org/10.1007/978-3-540-69162-4_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042332172


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tamagawa University, 6-1-1 Tamagawagakuen, Machida-shi, 194-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412905.b", 
          "name": [
            "Tamagawa University, 6-1-1 Tamagawagakuen, Machida-shi, 194-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omori", 
        "givenName": "Takashi", 
        "id": "sg:person.01263557346.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tamagawa University, 6-1-1 Tamagawagakuen, Machida-shi, 194-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412905.b", 
          "name": [
            "Tamagawa University, 6-1-1 Tamagawagakuen, Machida-shi, 194-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokoyama", 
        "givenName": "Ayami", 
        "id": "sg:person.012673117171.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012673117171.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tamagawa University, 6-1-1 Tamagawagakuen, Machida-shi, 194-8610, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412905.b", 
          "name": [
            "Tamagawa University, 6-1-1 Tamagawagakuen, Machida-shi, 194-8610, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okada", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.0747261673.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747261673.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hokusei Gakuen University, 2-3-1 Ohyachi-Nishi, Atsubetu-ku, 004-8631, Sapporo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.444704.7", 
          "name": [
            "Hokusei Gakuen University, 2-3-1 Ohyachi-Nishi, Atsubetu-ku, 004-8631, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Satoru", 
        "id": "sg:person.010731277731.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010731277731.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo University, 3-8-1 Komaba,Meguro-ku, 153-8902, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Tokyo University, 3-8-1 Komaba,Meguro-ku, 153-8902, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagata", 
        "givenName": "Yugo", 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "In human interaction with a robot, estimation of the other\u2019s intention is thought of as an indispensable factor for achievement of a precise self action. But estimation of the other\u2019s intention is heavy loaded information processing, and we don\u2019t think humans are always doing it. So, in this paper, we propose a light loaded computational algorithm that achieves human-robot interaction without intention estimation in the self agent. In the method, the self agent assumes the other agent to estimate intention, and searches for an action that is easy to be interpreted by the other agent. We evaluated the effectiveness of the proposed model by computer simulation on a hunter task. This method should be positioned as one of the possible variations of intention-based interaction.", 
    "editor": [
      {
        "familyName": "Ishikawa", 
        "givenName": "Masumi", 
        "type": "Person"
      }, 
      {
        "familyName": "Doya", 
        "givenName": "Kenji", 
        "type": "Person"
      }, 
      {
        "familyName": "Miyamoto", 
        "givenName": "Hiroyuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Yamakawa", 
        "givenName": "Takeshi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-69162-4_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-69159-4", 
        "978-3-540-69162-4"
      ], 
      "name": "Neural Information Processing", 
      "type": "Book"
    }, 
    "keywords": [
      "human-robot interaction", 
      "self agent", 
      "intention estimation", 
      "human interaction", 
      "computational algorithm", 
      "self action", 
      "computer simulation", 
      "information processing", 
      "robot", 
      "estimation", 
      "algorithm", 
      "intention", 
      "computational modeling", 
      "task", 
      "processing", 
      "search", 
      "method", 
      "effectiveness", 
      "modeling", 
      "simulations", 
      "indispensable factor", 
      "possible variations", 
      "achievement", 
      "model", 
      "interaction", 
      "action", 
      "agents", 
      "humans", 
      "factors", 
      "paper", 
      "variation", 
      "precise self action", 
      "heavy loaded information processing", 
      "loaded information processing", 
      "hunter task", 
      "intention-based interaction", 
      "Active Intention Estimation"
    ], 
    "name": "Computational Modeling of Human-Robot Interaction Based on Active Intention Estimation", 
    "pagination": "185-192", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042332172"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-69162-4_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-69162-4_20", 
      "https://app.dimensions.ai/details/publication/pub.1042332172"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_80.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-69162-4_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69162-4_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69162-4_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69162-4_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-69162-4_20'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-69162-4_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N882920f6e6604555b85281a6b27c013d
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description In human interaction with a robot, estimation of the other’s intention is thought of as an indispensable factor for achievement of a precise self action. But estimation of the other’s intention is heavy loaded information processing, and we don’t think humans are always doing it. So, in this paper, we propose a light loaded computational algorithm that achieves human-robot interaction without intention estimation in the self agent. In the method, the self agent assumes the other agent to estimate intention, and searches for an action that is easy to be interpreted by the other agent. We evaluated the effectiveness of the proposed model by computer simulation on a hunter task. This method should be positioned as one of the possible variations of intention-based interaction.
7 schema:editor Nf5e41a9cc7ef458aa49fe4920f2484f3
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nfbe09f6b197d4a2385ebaa63f271ad10
12 schema:keywords Active Intention Estimation
13 achievement
14 action
15 agents
16 algorithm
17 computational algorithm
18 computational modeling
19 computer simulation
20 effectiveness
21 estimation
22 factors
23 heavy loaded information processing
24 human interaction
25 human-robot interaction
26 humans
27 hunter task
28 indispensable factor
29 information processing
30 intention
31 intention estimation
32 intention-based interaction
33 interaction
34 loaded information processing
35 method
36 model
37 modeling
38 paper
39 possible variations
40 precise self action
41 processing
42 robot
43 search
44 self action
45 self agent
46 simulations
47 task
48 variation
49 schema:name Computational Modeling of Human-Robot Interaction Based on Active Intention Estimation
50 schema:pagination 185-192
51 schema:productId N866e42d94320439fba091ee8d5655823
52 Nc565ed2720e6488c89bd56daa2bb381c
53 schema:publisher Nc24ac7de620f4201814ce514842efa74
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042332172
55 https://doi.org/10.1007/978-3-540-69162-4_20
56 schema:sdDatePublished 2022-01-01T19:28
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N34fc15b4fa884b728facf2368507c95f
59 schema:url https://doi.org/10.1007/978-3-540-69162-4_20
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N0724c87c041a4e3e92e6dc3aed94986b rdf:first sg:person.010731277731.70
64 rdf:rest N88d35b18d9254f15a6c7dd98c756ae44
65 N14c7ecf69b214d90a4c21a25e961149c rdf:first sg:person.012673117171.19
66 rdf:rest N20ea993f15ad4c369b66a3dc7956cae1
67 N1b489406b82e407d9670e183fc1005ec schema:familyName Yamakawa
68 schema:givenName Takeshi
69 rdf:type schema:Person
70 N20ea993f15ad4c369b66a3dc7956cae1 rdf:first sg:person.0747261673.93
71 rdf:rest N0724c87c041a4e3e92e6dc3aed94986b
72 N2fd0506c9241416084e0595212a21673 schema:familyName Ishikawa
73 schema:givenName Masumi
74 rdf:type schema:Person
75 N34fc15b4fa884b728facf2368507c95f schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N77d4fbf339df4e1f8423b1cf49912c05 schema:affiliation grid-institutes:grid.26999.3d
78 schema:familyName Nagata
79 schema:givenName Yugo
80 rdf:type schema:Person
81 N866e42d94320439fba091ee8d5655823 schema:name dimensions_id
82 schema:value pub.1042332172
83 rdf:type schema:PropertyValue
84 N882920f6e6604555b85281a6b27c013d rdf:first sg:person.01263557346.07
85 rdf:rest N14c7ecf69b214d90a4c21a25e961149c
86 N88d35b18d9254f15a6c7dd98c756ae44 rdf:first N77d4fbf339df4e1f8423b1cf49912c05
87 rdf:rest rdf:nil
88 N8be568d4a9524fd08973c05b9bb1b745 rdf:first Nb6cfad0d5e0f41c8ac0794f5907aaa1c
89 rdf:rest Ncb693d86d8564dd2a5d02fdb7f1040fa
90 Nb6cfad0d5e0f41c8ac0794f5907aaa1c schema:familyName Miyamoto
91 schema:givenName Hiroyuki
92 rdf:type schema:Person
93 Nc24ac7de620f4201814ce514842efa74 schema:name Springer Nature
94 rdf:type schema:Organisation
95 Nc565ed2720e6488c89bd56daa2bb381c schema:name doi
96 schema:value 10.1007/978-3-540-69162-4_20
97 rdf:type schema:PropertyValue
98 Ncb693d86d8564dd2a5d02fdb7f1040fa rdf:first N1b489406b82e407d9670e183fc1005ec
99 rdf:rest rdf:nil
100 Ncb6c9ade936749f086b7eea83128b10a schema:familyName Doya
101 schema:givenName Kenji
102 rdf:type schema:Person
103 Neb432851f4934ad9a4d5ba7a2cabe727 rdf:first Ncb6c9ade936749f086b7eea83128b10a
104 rdf:rest N8be568d4a9524fd08973c05b9bb1b745
105 Nf5e41a9cc7ef458aa49fe4920f2484f3 rdf:first N2fd0506c9241416084e0595212a21673
106 rdf:rest Neb432851f4934ad9a4d5ba7a2cabe727
107 Nfbe09f6b197d4a2385ebaa63f271ad10 schema:isbn 978-3-540-69159-4
108 978-3-540-69162-4
109 schema:name Neural Information Processing
110 rdf:type schema:Book
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
115 schema:name Artificial Intelligence and Image Processing
116 rdf:type schema:DefinedTerm
117 sg:person.010731277731.70 schema:affiliation grid-institutes:grid.444704.7
118 schema:familyName Ishikawa
119 schema:givenName Satoru
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010731277731.70
121 rdf:type schema:Person
122 sg:person.01263557346.07 schema:affiliation grid-institutes:grid.412905.b
123 schema:familyName Omori
124 schema:givenName Takashi
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263557346.07
126 rdf:type schema:Person
127 sg:person.012673117171.19 schema:affiliation grid-institutes:grid.412905.b
128 schema:familyName Yokoyama
129 schema:givenName Ayami
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012673117171.19
131 rdf:type schema:Person
132 sg:person.0747261673.93 schema:affiliation grid-institutes:grid.412905.b
133 schema:familyName Okada
134 schema:givenName Hiroyuki
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747261673.93
136 rdf:type schema:Person
137 grid-institutes:grid.26999.3d schema:alternateName Tokyo University, 3-8-1 Komaba,Meguro-ku, 153-8902, Tokyo, Japan
138 schema:name Tokyo University, 3-8-1 Komaba,Meguro-ku, 153-8902, Tokyo, Japan
139 rdf:type schema:Organization
140 grid-institutes:grid.412905.b schema:alternateName Tamagawa University, 6-1-1 Tamagawagakuen, Machida-shi, 194-8610, Tokyo, Japan
141 schema:name Tamagawa University, 6-1-1 Tamagawagakuen, Machida-shi, 194-8610, Tokyo, Japan
142 rdf:type schema:Organization
143 grid-institutes:grid.444704.7 schema:alternateName Hokusei Gakuen University, 2-3-1 Ohyachi-Nishi, Atsubetu-ku, 004-8631, Sapporo, Japan
144 schema:name Hokusei Gakuen University, 2-3-1 Ohyachi-Nishi, Atsubetu-ku, 004-8631, Sapporo, Japan
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...