From Reaction Models to Influence Graphs and Back: A Theorem View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

François Fages , Sylvain Soliman

ABSTRACT

Biologists use diagrams to represent interactions between molecular species, and on the computer, diagrammatic notations are also more and more employed in interactive maps. These diagrams are fundamentally of two types: reaction graphs and activation/inhibition graphs. In this paper, we study the formal relationship between these graphs. We consider systems of biochemical reactions with kinetic expressions, as written in the Systems Biology Markup Language SBML, and interpreted by a system of Ordinary Differential Equations over molecular concentrations. We show that under a general condition of increasing monotonicity of the kinetic expressions, and in absence of both activation and inhibition effects between a pair of molecules, the influence graph inferred from the stoichiometric coefficients of the reactions is equal to the one defined by the signs of the coefficients of the Jacobian matrix. Under these conditions, satisfied by mass action law, Michaelis-Menten and Hill kinetics, the influence graph is thus independent of the precise kinetic expressions, and is computable in linear time in the number of reactions. We apply these results to Kohn’s map of the mammalian cell cycle and to the MAPK signalling cascade. Then we propose a syntax for denoting antagonists in reaction rules and generalize our results to this setting. More... »

PAGES

90-102

References to SciGraph publications

Book

TITLE

Formal Methods in Systems Biology

ISBN

978-3-540-68410-7
978-3-540-68413-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-68413-8_7

DOI

http://dx.doi.org/10.1007/978-3-540-68413-8_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008281057


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Projet Contraintes, INRIA Rocquencourt, BP105, 78153\u00a0Le Chesnay Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fages", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.01105221112.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105221112.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Projet Contraintes, INRIA Rocquencourt, BP105, 78153\u00a0Le Chesnay Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soliman", 
        "givenName": "Sylvain", 
        "id": "sg:person.01032342427.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032342427.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tcs.2004.03.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000629092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001525104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002966165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2007.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012748388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2008.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021425271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81703-8_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026370106", 
          "https://doi.org/10.1007/978-3-642-81703-8_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.11.5818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031591026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.200308060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033012673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037837492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1976.tb11108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044071175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crvi.2005.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049545014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000076100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049817752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100540a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055672411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218339098000042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062974517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218339098000054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062974518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4024/2040402.jbpc.04.02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071887843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/cc.4.3.1548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072298248"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Biologists use diagrams to represent interactions between molecular species, and on the computer, diagrammatic notations are also more and more employed in interactive maps. These diagrams are fundamentally of two types: reaction graphs and activation/inhibition graphs. In this paper, we study the formal relationship between these graphs. We consider systems of biochemical reactions with kinetic expressions, as written in the Systems Biology Markup Language SBML, and interpreted by a system of Ordinary Differential Equations over molecular concentrations. We show that under a general condition of increasing monotonicity of the kinetic expressions, and in absence of both activation and inhibition effects between a pair of molecules, the influence graph inferred from the stoichiometric coefficients of the reactions is equal to the one defined by the signs of the coefficients of the Jacobian matrix. Under these conditions, satisfied by mass action law, Michaelis-Menten and Hill kinetics, the influence graph is thus independent of the precise kinetic expressions, and is computable in linear time in the number of reactions. We apply these results to Kohn\u2019s map of the mammalian cell cycle and to the MAPK signalling cascade. Then we propose a syntax for denoting antagonists in reaction rules and generalize our results to this setting.", 
    "editor": [
      {
        "familyName": "Fisher", 
        "givenName": "Jasmin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-68413-8_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-68410-7", 
        "978-3-540-68413-8"
      ], 
      "name": "Formal Methods in Systems Biology", 
      "type": "Book"
    }, 
    "name": "From Reaction Models to Influence Graphs and Back: A Theorem", 
    "pagination": "90-102", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-68413-8_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2773785d747604c4e8970851612c9202e2e365319ff450a4ff8d2b4c9ad375e2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008281057"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-68413-8_7", 
      "https://app.dimensions.ai/details/publication/pub.1008281057"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000248.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-68413-8_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-68413-8_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-68413-8_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-68413-8_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-68413-8_7'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-68413-8_7 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N7369a9cf7646471ba626c02052c6e10c
4 schema:citation sg:pub.10.1007/978-3-642-81703-8_24
5 https://doi.org/10.1016/j.crvi.2005.10.002
6 https://doi.org/10.1016/j.jtbi.2007.06.016
7 https://doi.org/10.1016/j.tcs.2004.03.063
8 https://doi.org/10.1016/j.tcs.2008.04.024
9 https://doi.org/10.1021/j100540a008
10 https://doi.org/10.1073/pnas.97.11.5818
11 https://doi.org/10.1083/jcb.200308060
12 https://doi.org/10.1093/bioinformatics/btg015
13 https://doi.org/10.1093/bioinformatics/btl172
14 https://doi.org/10.1111/j.1432-1033.1976.tb11108.x
15 https://doi.org/10.1142/s0218339098000042
16 https://doi.org/10.1142/s0218339098000054
17 https://doi.org/10.1159/000076100
18 https://doi.org/10.1371/journal.pcbi.0030184
19 https://doi.org/10.4024/2040402.jbpc.04.02
20 https://doi.org/10.4161/cc.4.3.1548
21 schema:datePublished 2008
22 schema:datePublishedReg 2008-01-01
23 schema:description Biologists use diagrams to represent interactions between molecular species, and on the computer, diagrammatic notations are also more and more employed in interactive maps. These diagrams are fundamentally of two types: reaction graphs and activation/inhibition graphs. In this paper, we study the formal relationship between these graphs. We consider systems of biochemical reactions with kinetic expressions, as written in the Systems Biology Markup Language SBML, and interpreted by a system of Ordinary Differential Equations over molecular concentrations. We show that under a general condition of increasing monotonicity of the kinetic expressions, and in absence of both activation and inhibition effects between a pair of molecules, the influence graph inferred from the stoichiometric coefficients of the reactions is equal to the one defined by the signs of the coefficients of the Jacobian matrix. Under these conditions, satisfied by mass action law, Michaelis-Menten and Hill kinetics, the influence graph is thus independent of the precise kinetic expressions, and is computable in linear time in the number of reactions. We apply these results to Kohn’s map of the mammalian cell cycle and to the MAPK signalling cascade. Then we propose a syntax for denoting antagonists in reaction rules and generalize our results to this setting.
24 schema:editor N4d128b63d02143279f0e64d1a5c26f24
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N96e23696564049c68b7b5dc8e0cb41a3
29 schema:name From Reaction Models to Influence Graphs and Back: A Theorem
30 schema:pagination 90-102
31 schema:productId N0221fbac42b64efbb2447924b1b1612d
32 N11adde9671c7496ebb4783265d4e7eec
33 Nf131f084596544979b53e28b409d5be8
34 schema:publisher N635d787609ee4415b430a54baf30f79e
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008281057
36 https://doi.org/10.1007/978-3-540-68413-8_7
37 schema:sdDatePublished 2019-04-15T13:25
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N98cc5fdb6f554b6e8c11e2cf290f14f8
40 schema:url http://link.springer.com/10.1007/978-3-540-68413-8_7
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N0221fbac42b64efbb2447924b1b1612d schema:name doi
45 schema:value 10.1007/978-3-540-68413-8_7
46 rdf:type schema:PropertyValue
47 N11adde9671c7496ebb4783265d4e7eec schema:name readcube_id
48 schema:value 2773785d747604c4e8970851612c9202e2e365319ff450a4ff8d2b4c9ad375e2
49 rdf:type schema:PropertyValue
50 N4d128b63d02143279f0e64d1a5c26f24 rdf:first N563e8d5cd3da499096d61d6fd19324d3
51 rdf:rest rdf:nil
52 N563e8d5cd3da499096d61d6fd19324d3 schema:familyName Fisher
53 schema:givenName Jasmin
54 rdf:type schema:Person
55 N635d787609ee4415b430a54baf30f79e schema:location Berlin, Heidelberg
56 schema:name Springer Berlin Heidelberg
57 rdf:type schema:Organisation
58 N7369a9cf7646471ba626c02052c6e10c rdf:first sg:person.01105221112.85
59 rdf:rest N9d9638fb733a41b294a91e7610b791e3
60 N96e23696564049c68b7b5dc8e0cb41a3 schema:isbn 978-3-540-68410-7
61 978-3-540-68413-8
62 schema:name Formal Methods in Systems Biology
63 rdf:type schema:Book
64 N98cc5fdb6f554b6e8c11e2cf290f14f8 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N9d9638fb733a41b294a91e7610b791e3 rdf:first sg:person.01032342427.73
67 rdf:rest rdf:nil
68 Nf131f084596544979b53e28b409d5be8 schema:name dimensions_id
69 schema:value pub.1008281057
70 rdf:type schema:PropertyValue
71 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
72 schema:name Biological Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
75 schema:name Biochemistry and Cell Biology
76 rdf:type schema:DefinedTerm
77 sg:person.01032342427.73 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
78 schema:familyName Soliman
79 schema:givenName Sylvain
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032342427.73
81 rdf:type schema:Person
82 sg:person.01105221112.85 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
83 schema:familyName Fages
84 schema:givenName François
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105221112.85
86 rdf:type schema:Person
87 sg:pub.10.1007/978-3-642-81703-8_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026370106
88 https://doi.org/10.1007/978-3-642-81703-8_24
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.crvi.2005.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049545014
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.jtbi.2007.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012748388
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.tcs.2004.03.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000629092
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.tcs.2008.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021425271
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1021/j100540a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055672411
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1073/pnas.97.11.5818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031591026
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1083/jcb.200308060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033012673
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1093/bioinformatics/btg015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037837492
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1093/bioinformatics/btl172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001525104
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1111/j.1432-1033.1976.tb11108.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044071175
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1142/s0218339098000042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062974517
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1142/s0218339098000054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062974518
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1159/000076100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049817752
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1371/journal.pcbi.0030184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002966165
117 rdf:type schema:CreativeWork
118 https://doi.org/10.4024/2040402.jbpc.04.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071887843
119 rdf:type schema:CreativeWork
120 https://doi.org/10.4161/cc.4.3.1548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072298248
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
123 schema:name Projet Contraintes, INRIA Rocquencourt, BP105, 78153 Le Chesnay Cedex, France
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...