Integrating Open Sources and Relational Data with SPARQL View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Orri Erling , Ivan Mikhailov

ABSTRACT

We believe that the possibility to use SPARQL as a front end to heterogeneous data without significant cost in performance or expressive power is key to RDF taking its rightful place as the lingua franca of data integration. To this effect, we demonstrate how RDF and SPARQL can tackle a mix of standard relational workload and data mining in public data sources. We discuss extending SPARQL for business intelligence (BI) workloads and relate experiences on running SPARQL against relational and native RDF databases. We use the well known TPC H benchmark as our reference schema and workload. We define a mapping of the TPC H schema to RDF and restate the queries as BI extended SPARQL. To this effect, we define aggregation and nested queries for SPARQL. We demonstrate that it is possible to perform the TPC H workload restated in SPARQL against an existing RDBMS without loss of performance or expressivity and without changes to the RDBMS. Finally, we demonstrate how to combine TPC-H or XBRL financial reports with RDF data from CIA factbook and DBpedia. More... »

PAGES

838-842

Book

TITLE

The Semantic Web: Research and Applications

ISBN

978-3-540-68233-2
978-3-540-68234-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-68234-9_69

DOI

http://dx.doi.org/10.1007/978-3-540-68234-9_69

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019734294


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "OpenLink Software, 10 Burlington Mall Road Suite 265, MA 01803, Burlington, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erling", 
        "givenName": "Orri", 
        "id": "sg:person.011715705740.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011715705740.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "OpenLink Software, 10 Burlington Mall Road Suite 265, MA 01803, Burlington, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikhailov", 
        "givenName": "Ivan", 
        "id": "sg:person.016053623467.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016053623467.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "We believe that the possibility to use SPARQL as a front end to heterogeneous data without significant cost in performance or expressive power is key to RDF taking its rightful place as the lingua franca of data integration. To this effect, we demonstrate how RDF and SPARQL can tackle a mix of standard relational workload and data mining in public data sources. We discuss extending SPARQL for business intelligence (BI) workloads and relate experiences on running SPARQL against relational and native RDF databases. We use the well known TPC H benchmark as our reference schema and workload. We define a mapping of the TPC H schema to RDF and restate the queries as BI extended SPARQL. To this effect, we define aggregation and nested queries for SPARQL. We demonstrate that it is possible to perform the TPC H workload restated in SPARQL against an existing RDBMS without loss of performance or expressivity and without changes to the RDBMS. Finally, we demonstrate how to combine TPC-H or XBRL financial reports with RDF data from CIA factbook and DBpedia.", 
    "editor": [
      {
        "familyName": "Bechhofer", 
        "givenName": "Sean", 
        "type": "Person"
      }, 
      {
        "familyName": "Hauswirth", 
        "givenName": "Manfred", 
        "type": "Person"
      }, 
      {
        "familyName": "Hoffmann", 
        "givenName": "J\u00f6rg", 
        "type": "Person"
      }, 
      {
        "familyName": "Koubarakis", 
        "givenName": "Manolis", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-68234-9_69", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-68233-2", 
        "978-3-540-68234-9"
      ], 
      "name": "The Semantic Web: Research and Applications", 
      "type": "Book"
    }, 
    "name": "Integrating Open Sources and Relational Data with SPARQL", 
    "pagination": "838-842", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-68234-9_69"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e06dcc0af8d61c6b47eed7d6b9e61541ae79ad917e96278811c9c68aaef6932"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019734294"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-68234-9_69", 
      "https://app.dimensions.ai/details/publication/pub.1019734294"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113661_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-68234-9_69"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-68234-9_69'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-68234-9_69'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-68234-9_69'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-68234-9_69'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-68234-9_69 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N6b5d56c982ff4d9b90273bc426f931f2
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description We believe that the possibility to use SPARQL as a front end to heterogeneous data without significant cost in performance or expressive power is key to RDF taking its rightful place as the lingua franca of data integration. To this effect, we demonstrate how RDF and SPARQL can tackle a mix of standard relational workload and data mining in public data sources. We discuss extending SPARQL for business intelligence (BI) workloads and relate experiences on running SPARQL against relational and native RDF databases. We use the well known TPC H benchmark as our reference schema and workload. We define a mapping of the TPC H schema to RDF and restate the queries as BI extended SPARQL. To this effect, we define aggregation and nested queries for SPARQL. We demonstrate that it is possible to perform the TPC H workload restated in SPARQL against an existing RDBMS without loss of performance or expressivity and without changes to the RDBMS. Finally, we demonstrate how to combine TPC-H or XBRL financial reports with RDF data from CIA factbook and DBpedia.
7 schema:editor Ndbf7c5f657e9481e819895dfd48f3979
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N54dd8f72b0684c0d834c3ef13d79c10c
12 schema:name Integrating Open Sources and Relational Data with SPARQL
13 schema:pagination 838-842
14 schema:productId N0764bf1a416840759327b4dacdf2e6da
15 N0d097176e257409f9596f58687b79863
16 Nd7b6c1bbc2ea4499bbfb54e7ebc17be4
17 schema:publisher N398d9809deac4e739267b6e0090bff67
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019734294
19 https://doi.org/10.1007/978-3-540-68234-9_69
20 schema:sdDatePublished 2019-04-16T06:02
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nc4c0d81e11de49eeb62dfcda43813aad
23 schema:url https://link.springer.com/10.1007%2F978-3-540-68234-9_69
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0764bf1a416840759327b4dacdf2e6da schema:name readcube_id
28 schema:value 5e06dcc0af8d61c6b47eed7d6b9e61541ae79ad917e96278811c9c68aaef6932
29 rdf:type schema:PropertyValue
30 N0d097176e257409f9596f58687b79863 schema:name doi
31 schema:value 10.1007/978-3-540-68234-9_69
32 rdf:type schema:PropertyValue
33 N232e667870b5409092826a50a3147153 schema:familyName Hoffmann
34 schema:givenName Jörg
35 rdf:type schema:Person
36 N398d9809deac4e739267b6e0090bff67 schema:location Berlin, Heidelberg
37 schema:name Springer Berlin Heidelberg
38 rdf:type schema:Organisation
39 N4fe64bca9e5d4616b826038356040e7f schema:name OpenLink Software, 10 Burlington Mall Road Suite 265, MA 01803, Burlington, U.S.A
40 rdf:type schema:Organization
41 N54dd8f72b0684c0d834c3ef13d79c10c schema:isbn 978-3-540-68233-2
42 978-3-540-68234-9
43 schema:name The Semantic Web: Research and Applications
44 rdf:type schema:Book
45 N56d2381859624db9b035c05effbf8669 schema:familyName Hauswirth
46 schema:givenName Manfred
47 rdf:type schema:Person
48 N586a1fb87cdf438eb88af218ce445b6c schema:familyName Bechhofer
49 schema:givenName Sean
50 rdf:type schema:Person
51 N6b5d56c982ff4d9b90273bc426f931f2 rdf:first sg:person.011715705740.17
52 rdf:rest N8d8f4f5bdfc84b0a8a5076be98897752
53 N81d59d50f1414729b7d38b1c0b54f096 rdf:first N232e667870b5409092826a50a3147153
54 rdf:rest Nef6a8879d4144d16ae4e9d1df95d2558
55 N8d8f4f5bdfc84b0a8a5076be98897752 rdf:first sg:person.016053623467.80
56 rdf:rest rdf:nil
57 N9933d6a9713444b4987361bb56063966 rdf:first N56d2381859624db9b035c05effbf8669
58 rdf:rest N81d59d50f1414729b7d38b1c0b54f096
59 Nc4c0d81e11de49eeb62dfcda43813aad schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nc6911d3f0d994156b3e522e0088901d4 schema:name OpenLink Software, 10 Burlington Mall Road Suite 265, MA 01803, Burlington, U.S.A
62 rdf:type schema:Organization
63 Nd7b6c1bbc2ea4499bbfb54e7ebc17be4 schema:name dimensions_id
64 schema:value pub.1019734294
65 rdf:type schema:PropertyValue
66 Ndbf7c5f657e9481e819895dfd48f3979 rdf:first N586a1fb87cdf438eb88af218ce445b6c
67 rdf:rest N9933d6a9713444b4987361bb56063966
68 Nea4965035a5841a8843c558dfc3c4bec schema:familyName Koubarakis
69 schema:givenName Manolis
70 rdf:type schema:Person
71 Nef6a8879d4144d16ae4e9d1df95d2558 rdf:first Nea4965035a5841a8843c558dfc3c4bec
72 rdf:rest rdf:nil
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information Systems
78 rdf:type schema:DefinedTerm
79 sg:person.011715705740.17 schema:affiliation N4fe64bca9e5d4616b826038356040e7f
80 schema:familyName Erling
81 schema:givenName Orri
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011715705740.17
83 rdf:type schema:Person
84 sg:person.016053623467.80 schema:affiliation Nc6911d3f0d994156b3e522e0088901d4
85 schema:familyName Mikhailov
86 schema:givenName Ivan
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016053623467.80
88 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...