Snow Accumulation and Snowmelt Monitoring in Greenland and Antarctica View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

S. V. Nghiem , K. Steffen , G. Neumann , R. Huff

ABSTRACT

Snow deposition, accumulation, and melt on an ice sheet are key components of mass balance. Innovative algorithms using satellite scatterometer data have been developed to monitor snowmelt, ice layer extent, and snow accumulation on Greenland with verifications using in-situ data from the Greenland Climate Network (GC-Net). QuikSCAT/SeaWinds Scatterometer (QSCAT) has collected data over Greenland and Antarctic two times per day since July 1999. QSCAT data show the shortest melt season in 2004, verified by GC-Net data at ETH/CU Camp, and detect peculiar snowmelt during wintertime in Greenland in 2005. QSCAT results reveal a record increase in the snow accumulation rate on the Greenland ice sheet including the west flank in January–March 2005 with an estimate of 565 km3 of total snow accumulation volume. The record snow anomaly is verified by GC-Net snow measurements, showing the largest snow accumulation rate in the first half of 2005 ever recorded in the past decade since the inception of the GC-Net. The QSCAT algorithms developed for Greenland are adapted for Antarctica. QSCAT results show strong melt in 2002 and prolonged melt in 2005 at McMurdo. New extensive ice layers, created by refreezing of melt water in the firn layer, were identified by QSCAT along the Antarctica Walgreen, Bakutis, and Hobbs coasts extending well inland in 2005. Extensive regions of ice layering, evidence of preceding strong melt occurrence, were also found over the Rockefeller Plateau and along the Ross Ice Shelf adjacent to Queen Maud Mountains in 2005. More... »

PAGES

31-38

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-49350-1_5

DOI

http://dx.doi.org/10.1007/978-3-540-49350-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044196788


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 300-235, 91007, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 300-235, 91007, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nghiem", 
        "givenName": "S. V.", 
        "id": "sg:person.010736300741.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736300741.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cooperative Institute for Research in Environmental Sciences, University of Colorado, Campus Box 216, 80309-0216, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.464551.7", 
          "name": [
            "Cooperative Institute for Research in Environmental Sciences, University of Colorado, Campus Box 216, 80309-0216, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steffen", 
        "givenName": "K.", 
        "id": "sg:person.01340341554.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340341554.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 300-235, 91007, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 300-235, 91007, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "G.", 
        "id": "sg:person.0726300427.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726300427.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cooperative Institute for Research in Environmental Sciences, University of Colorado, Campus Box 216, 80309-0216, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.464551.7", 
          "name": [
            "Cooperative Institute for Research in Environmental Sciences, University of Colorado, Campus Box 216, 80309-0216, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huff", 
        "givenName": "R.", 
        "id": "sg:person.014264341555.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264341555.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "Snow deposition, accumulation, and melt on an ice sheet are key components of mass balance. Innovative algorithms using satellite scatterometer data have been developed to monitor snowmelt, ice layer extent, and snow accumulation on Greenland with verifications using in-situ data from the Greenland Climate Network (GC-Net). QuikSCAT/SeaWinds Scatterometer (QSCAT) has collected data over Greenland and Antarctic two times per day since July 1999. QSCAT data show the shortest melt season in 2004, verified by GC-Net data at ETH/CU Camp, and detect peculiar snowmelt during wintertime in Greenland in 2005. QSCAT results reveal a record increase in the snow accumulation rate on the Greenland ice sheet including the west flank in January\u2013March 2005 with an estimate of 565 km3 of total snow accumulation volume. The record snow anomaly is verified by GC-Net snow measurements, showing the largest snow accumulation rate in the first half of 2005 ever recorded in the past decade since the inception of the GC-Net. The QSCAT algorithms developed for Greenland are adapted for Antarctica. QSCAT results show strong melt in 2002 and prolonged melt in 2005 at McMurdo. New extensive ice layers, created by refreezing of melt water in the firn layer, were identified by QSCAT along the Antarctica Walgreen, Bakutis, and Hobbs coasts extending well inland in 2005. Extensive regions of ice layering, evidence of preceding strong melt occurrence, were also found over the Rockefeller Plateau and along the Ross Ice Shelf adjacent to Queen Maud Mountains in 2005.", 
    "editor": [
      {
        "familyName": "Tregoning", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "familyName": "Rizos", 
        "givenName": "Chris", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-49350-1_5", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-49349-5", 
        "978-3-540-49350-1"
      ], 
      "name": "Dynamic Planet", 
      "type": "Book"
    }, 
    "keywords": [
      "snow accumulation rate", 
      "ice sheet", 
      "snow accumulation", 
      "accumulation rates", 
      "Greenland ice sheet", 
      "Greenland Climate Network", 
      "Ross Ice Shelf", 
      "Queen Maud Mountains", 
      "shortest melt season", 
      "satellite scatterometer data", 
      "melt occurrence", 
      "snow anomalies", 
      "Ice Shelf", 
      "melt season", 
      "west flank", 
      "melt water", 
      "QSCAT data", 
      "firn layer", 
      "SeaWinds scatterometer", 
      "situ data", 
      "snow measurements", 
      "ice layering", 
      "snow deposition", 
      "scatterometer data", 
      "climate networks", 
      "stronger melt", 
      "Greenland", 
      "ice layer", 
      "mass balance", 
      "record increases", 
      "GC-Net", 
      "accumulation volume", 
      "extensive regions", 
      "snowmelt", 
      "Antarctica", 
      "melt", 
      "km3", 
      "refreezing", 
      "shelf", 
      "scatterometer", 
      "sheets", 
      "McMurdo", 
      "flank", 
      "wintertime", 
      "Mountains", 
      "plateau", 
      "layering", 
      "anomalies", 
      "first half", 
      "accumulation", 
      "season", 
      "layer", 
      "water", 
      "deposition", 
      "data", 
      "estimates", 
      "occurrence", 
      "region", 
      "past decade", 
      "balance", 
      "Hobbs", 
      "measurements", 
      "decades", 
      "extent", 
      "key component", 
      "innovative algorithm", 
      "monitoring", 
      "evidence", 
      "rate", 
      "volume", 
      "results", 
      "components", 
      "half", 
      "increase", 
      "two times", 
      "inception", 
      "time", 
      "verification", 
      "Walgreens", 
      "days", 
      "network", 
      "algorithm", 
      "cAMP"
    ], 
    "name": "Snow Accumulation and Snowmelt Monitoring in Greenland and Antarctica", 
    "pagination": "31-38", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044196788"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-49350-1_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-49350-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1044196788"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_464.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-49350-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-49350-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-49350-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-49350-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-49350-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      107 URIs      100 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-49350-1_5 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N4fe2e40e2d3644e3be646792ee261039
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description Snow deposition, accumulation, and melt on an ice sheet are key components of mass balance. Innovative algorithms using satellite scatterometer data have been developed to monitor snowmelt, ice layer extent, and snow accumulation on Greenland with verifications using in-situ data from the Greenland Climate Network (GC-Net). QuikSCAT/SeaWinds Scatterometer (QSCAT) has collected data over Greenland and Antarctic two times per day since July 1999. QSCAT data show the shortest melt season in 2004, verified by GC-Net data at ETH/CU Camp, and detect peculiar snowmelt during wintertime in Greenland in 2005. QSCAT results reveal a record increase in the snow accumulation rate on the Greenland ice sheet including the west flank in January–March 2005 with an estimate of 565 km3 of total snow accumulation volume. The record snow anomaly is verified by GC-Net snow measurements, showing the largest snow accumulation rate in the first half of 2005 ever recorded in the past decade since the inception of the GC-Net. The QSCAT algorithms developed for Greenland are adapted for Antarctica. QSCAT results show strong melt in 2002 and prolonged melt in 2005 at McMurdo. New extensive ice layers, created by refreezing of melt water in the firn layer, were identified by QSCAT along the Antarctica Walgreen, Bakutis, and Hobbs coasts extending well inland in 2005. Extensive regions of ice layering, evidence of preceding strong melt occurrence, were also found over the Rockefeller Plateau and along the Ross Ice Shelf adjacent to Queen Maud Mountains in 2005.
7 schema:editor N0bca05b15c034ae1825f7094832f504d
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc0484e28da3645dca5acc4d3875c344c
11 schema:keywords Antarctica
12 GC-Net
13 Greenland
14 Greenland Climate Network
15 Greenland ice sheet
16 Hobbs
17 Ice Shelf
18 McMurdo
19 Mountains
20 QSCAT data
21 Queen Maud Mountains
22 Ross Ice Shelf
23 SeaWinds scatterometer
24 Walgreens
25 accumulation
26 accumulation rates
27 accumulation volume
28 algorithm
29 anomalies
30 balance
31 cAMP
32 climate networks
33 components
34 data
35 days
36 decades
37 deposition
38 estimates
39 evidence
40 extensive regions
41 extent
42 firn layer
43 first half
44 flank
45 half
46 ice layer
47 ice layering
48 ice sheet
49 inception
50 increase
51 innovative algorithm
52 key component
53 km3
54 layer
55 layering
56 mass balance
57 measurements
58 melt
59 melt occurrence
60 melt season
61 melt water
62 monitoring
63 network
64 occurrence
65 past decade
66 plateau
67 rate
68 record increases
69 refreezing
70 region
71 results
72 satellite scatterometer data
73 scatterometer
74 scatterometer data
75 season
76 sheets
77 shelf
78 shortest melt season
79 situ data
80 snow accumulation
81 snow accumulation rate
82 snow anomalies
83 snow deposition
84 snow measurements
85 snowmelt
86 stronger melt
87 time
88 two times
89 verification
90 volume
91 water
92 west flank
93 wintertime
94 schema:name Snow Accumulation and Snowmelt Monitoring in Greenland and Antarctica
95 schema:pagination 31-38
96 schema:productId Nc4459cc0a62240ffa0fb9fe125aef89f
97 Nde81db80d13f46c4ad6eef22cf7de170
98 schema:publisher N90e8c4d99c40487eafab384cb9b7a5a1
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044196788
100 https://doi.org/10.1007/978-3-540-49350-1_5
101 schema:sdDatePublished 2022-09-02T16:17
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nad589be6d2a64c36b15429a2be0bf8d2
104 schema:url https://doi.org/10.1007/978-3-540-49350-1_5
105 sgo:license sg:explorer/license/
106 sgo:sdDataset chapters
107 rdf:type schema:Chapter
108 N0bca05b15c034ae1825f7094832f504d rdf:first N731c1ccb824b4cb2a97ad29752f04da8
109 rdf:rest N6067b89336dd47ca9bdfe0f18fbd0e34
110 N25046e832d454839a6aa2c030985ddec schema:familyName Rizos
111 schema:givenName Chris
112 rdf:type schema:Person
113 N4fe2e40e2d3644e3be646792ee261039 rdf:first sg:person.010736300741.50
114 rdf:rest N8d6506b0aee1440094f9366e27cdc5f7
115 N6067b89336dd47ca9bdfe0f18fbd0e34 rdf:first N25046e832d454839a6aa2c030985ddec
116 rdf:rest rdf:nil
117 N731c1ccb824b4cb2a97ad29752f04da8 schema:familyName Tregoning
118 schema:givenName Paul
119 rdf:type schema:Person
120 N8d6506b0aee1440094f9366e27cdc5f7 rdf:first sg:person.01340341554.51
121 rdf:rest Ne2232f63ce004532987770ad6ff770f2
122 N90e8c4d99c40487eafab384cb9b7a5a1 schema:name Springer Nature
123 rdf:type schema:Organisation
124 Na51bf08a463d4f1392d1f1d74851a0dc rdf:first sg:person.014264341555.01
125 rdf:rest rdf:nil
126 Nad589be6d2a64c36b15429a2be0bf8d2 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nc0484e28da3645dca5acc4d3875c344c schema:isbn 978-3-540-49349-5
129 978-3-540-49350-1
130 schema:name Dynamic Planet
131 rdf:type schema:Book
132 Nc4459cc0a62240ffa0fb9fe125aef89f schema:name dimensions_id
133 schema:value pub.1044196788
134 rdf:type schema:PropertyValue
135 Nde81db80d13f46c4ad6eef22cf7de170 schema:name doi
136 schema:value 10.1007/978-3-540-49350-1_5
137 rdf:type schema:PropertyValue
138 Ne2232f63ce004532987770ad6ff770f2 rdf:first sg:person.0726300427.57
139 rdf:rest Na51bf08a463d4f1392d1f1d74851a0dc
140 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
141 schema:name Earth Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
144 schema:name Physical Geography and Environmental Geoscience
145 rdf:type schema:DefinedTerm
146 sg:person.010736300741.50 schema:affiliation grid-institutes:grid.20861.3d
147 schema:familyName Nghiem
148 schema:givenName S. V.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736300741.50
150 rdf:type schema:Person
151 sg:person.01340341554.51 schema:affiliation grid-institutes:grid.464551.7
152 schema:familyName Steffen
153 schema:givenName K.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340341554.51
155 rdf:type schema:Person
156 sg:person.014264341555.01 schema:affiliation grid-institutes:grid.464551.7
157 schema:familyName Huff
158 schema:givenName R.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264341555.01
160 rdf:type schema:Person
161 sg:person.0726300427.57 schema:affiliation grid-institutes:grid.20861.3d
162 schema:familyName Neumann
163 schema:givenName G.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726300427.57
165 rdf:type schema:Person
166 grid-institutes:grid.20861.3d schema:alternateName Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 300-235, 91007, Pasadena, CA, USA
167 schema:name Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 300-235, 91007, Pasadena, CA, USA
168 rdf:type schema:Organization
169 grid-institutes:grid.464551.7 schema:alternateName Cooperative Institute for Research in Environmental Sciences, University of Colorado, Campus Box 216, 80309-0216, Boulder, CO, USA
170 schema:name Cooperative Institute for Research in Environmental Sciences, University of Colorado, Campus Box 216, 80309-0216, Boulder, CO, USA
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...