Medical Image Segmentation Using Topologically Adaptable Snakes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

Tim McInerney , Demetri Terzopoulos

ABSTRACT

This paper presents a technique for the segmentation of anatomic structures in medical images using a topologically adaptable snakes model. The model is set in the framework of domain subdivision using simplicial decomposition. This framework allows the model to maintain all of the strengths associated with traditional snakes while overcoming many of their limitations. The model can flow into complex shapes, even shapes with significant protrusions or branches, and topological changes are easily sensed and handled. Multiple instances of the model can be dynamically created, can seamlessly split or merge, or can simply and quickly detect and avoid collisions. Finally, the model can be easily and dynamically converted to and from the traditional parametric snakes model representation. We apply a 2D model to segment structures from medical images with complex shapes and topologies, such as arterial “trees”, that cannot easily be segmented with traditional deformable models. More... »

PAGES

92-101

Book

TITLE

Computer Vision, Virtual Reality and Robotics in Medicine

ISBN

978-3-540-59120-7
978-3-540-49197-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-49197-2_11

DOI

http://dx.doi.org/10.1007/978-3-540-49197-2_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042843148


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, University of Toronto, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Dept. of Computer Science, University of Toronto, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McInerney", 
        "givenName": "Tim", 
        "id": "sg:person.010127567536.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127567536.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, University of Toronto, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Dept. of Computer Science, University of Toronto, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "This paper presents a technique for the segmentation of anatomic structures in medical images using a topologically adaptable snakes model. The model is set in the framework of domain subdivision using simplicial decomposition. This framework allows the model to maintain all of the strengths associated with traditional snakes while overcoming many of their limitations. The model can flow into complex shapes, even shapes with significant protrusions or branches, and topological changes are easily sensed and handled. Multiple instances of the model can be dynamically created, can seamlessly split or merge, or can simply and quickly detect and avoid collisions. Finally, the model can be easily and dynamically converted to and from the traditional parametric snakes model representation. We apply a 2D model to segment structures from medical images with complex shapes and topologies, such as arterial \u201ctrees\u201d, that cannot easily be segmented with traditional deformable models.", 
    "editor": [
      {
        "familyName": "Ayache", 
        "givenName": "Nicholas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-49197-2_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-59120-7", 
        "978-3-540-49197-2"
      ], 
      "name": "Computer Vision, Virtual Reality and Robotics in Medicine", 
      "type": "Book"
    }, 
    "keywords": [
      "medical images", 
      "medical image segmentation", 
      "traditional deformable models", 
      "image segmentation", 
      "multiple instances", 
      "deformable model", 
      "domain subdivision", 
      "snake model", 
      "traditional snakes", 
      "topological changes", 
      "model representation", 
      "segmentation", 
      "simplicial decomposition", 
      "significant protrusion", 
      "adaptable snake model", 
      "complex shapes", 
      "images", 
      "framework", 
      "topology", 
      "model", 
      "representation", 
      "instances", 
      "anatomic structures", 
      "trees", 
      "technique", 
      "shape", 
      "decomposition", 
      "limitations", 
      "strength", 
      "structure", 
      "segment structures", 
      "snakes", 
      "collisions", 
      "branches", 
      "subdivision", 
      "protrusion", 
      "changes", 
      "paper", 
      "traditional parametric snakes model representation", 
      "parametric snakes model representation", 
      "snakes model representation", 
      "Topologically Adaptable Snakes", 
      "Adaptable Snakes"
    ], 
    "name": "Medical Image Segmentation Using Topologically Adaptable Snakes", 
    "pagination": "92-101", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042843148"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-49197-2_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-49197-2_11", 
      "https://app.dimensions.ai/details/publication/pub.1042843148"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_262.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-49197-2_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-49197-2_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-49197-2_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-49197-2_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-49197-2_11'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-49197-2_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nafd492e452a047ed97193ace5885874e
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description This paper presents a technique for the segmentation of anatomic structures in medical images using a topologically adaptable snakes model. The model is set in the framework of domain subdivision using simplicial decomposition. This framework allows the model to maintain all of the strengths associated with traditional snakes while overcoming many of their limitations. The model can flow into complex shapes, even shapes with significant protrusions or branches, and topological changes are easily sensed and handled. Multiple instances of the model can be dynamically created, can seamlessly split or merge, or can simply and quickly detect and avoid collisions. Finally, the model can be easily and dynamically converted to and from the traditional parametric snakes model representation. We apply a 2D model to segment structures from medical images with complex shapes and topologies, such as arterial “trees”, that cannot easily be segmented with traditional deformable models.
7 schema:editor Ncfef5db4cbe5478caa40996f17b8c267
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nbe15feb773674bf09f96abe89a565bfa
12 schema:keywords Adaptable Snakes
13 Topologically Adaptable Snakes
14 adaptable snake model
15 anatomic structures
16 branches
17 changes
18 collisions
19 complex shapes
20 decomposition
21 deformable model
22 domain subdivision
23 framework
24 image segmentation
25 images
26 instances
27 limitations
28 medical image segmentation
29 medical images
30 model
31 model representation
32 multiple instances
33 paper
34 parametric snakes model representation
35 protrusion
36 representation
37 segment structures
38 segmentation
39 shape
40 significant protrusion
41 simplicial decomposition
42 snake model
43 snakes
44 snakes model representation
45 strength
46 structure
47 subdivision
48 technique
49 topological changes
50 topology
51 traditional deformable models
52 traditional parametric snakes model representation
53 traditional snakes
54 trees
55 schema:name Medical Image Segmentation Using Topologically Adaptable Snakes
56 schema:pagination 92-101
57 schema:productId N83c55906cd944c0d85ef93f8d5ad1352
58 Nd91f7571873c44ffa58c44a5fd59b408
59 schema:publisher N0417abe183614b91b7eb46a715c49f57
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042843148
61 https://doi.org/10.1007/978-3-540-49197-2_11
62 schema:sdDatePublished 2022-01-01T19:15
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N1d0bbb695c894a6f9398eb35b98153dc
65 schema:url https://doi.org/10.1007/978-3-540-49197-2_11
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N0417abe183614b91b7eb46a715c49f57 schema:name Springer Nature
70 rdf:type schema:Organisation
71 N1d0bbb695c894a6f9398eb35b98153dc schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N83c55906cd944c0d85ef93f8d5ad1352 schema:name doi
74 schema:value 10.1007/978-3-540-49197-2_11
75 rdf:type schema:PropertyValue
76 Nafd492e452a047ed97193ace5885874e rdf:first sg:person.010127567536.82
77 rdf:rest Ne4a9054c7c8e4ed8b0f2588f17ef34cd
78 Nbe15feb773674bf09f96abe89a565bfa schema:isbn 978-3-540-49197-2
79 978-3-540-59120-7
80 schema:name Computer Vision, Virtual Reality and Robotics in Medicine
81 rdf:type schema:Book
82 Ncfef5db4cbe5478caa40996f17b8c267 rdf:first Ne11a9dc18c7342c0919b03e6906bd94f
83 rdf:rest rdf:nil
84 Nd91f7571873c44ffa58c44a5fd59b408 schema:name dimensions_id
85 schema:value pub.1042843148
86 rdf:type schema:PropertyValue
87 Ne11a9dc18c7342c0919b03e6906bd94f schema:familyName Ayache
88 schema:givenName Nicholas
89 rdf:type schema:Person
90 Ne4a9054c7c8e4ed8b0f2588f17ef34cd rdf:first sg:person.016347323445.35
91 rdf:rest rdf:nil
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:person.010127567536.82 schema:affiliation grid-institutes:grid.17063.33
99 schema:familyName McInerney
100 schema:givenName Tim
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127567536.82
102 rdf:type schema:Person
103 sg:person.016347323445.35 schema:affiliation grid-institutes:grid.17063.33
104 schema:familyName Terzopoulos
105 schema:givenName Demetri
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
107 rdf:type schema:Person
108 grid-institutes:grid.17063.33 schema:alternateName Dept. of Computer Science, University of Toronto, Toronto, ON, Canada
109 schema:name Dept. of Computer Science, University of Toronto, Toronto, ON, Canada
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...