Statistical Causality Analysis of INFOSEC Alert Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Xinzhou Qin , Wenke Lee

ABSTRACT

With the increasingly widespread deployment of security mechanisms, such as firewalls, intrusion detection systems (IDSs), antivirus software and authentication services, the problem of alert analysis has become very important. The large amount of alerts can overwhelm security administrators and prevent them from adequately understanding and analyzing the security state of the network, and initiating appropriate response in a timely fashion. Recently, several approaches for alert correlation and attack scenario analysis have been proposed. However, these approaches all have limited capabilities in detecting new attack scenarios. In this paper, we study the problem of security alert correlation with an emphasis on attack scenario analysis. In our framework, we use clustering techniques to process low-level alert data into high-level aggregated alerts, and conduct causal analysis based on statistical tests to discover new relationships among attacks. Our statistical causality approach complements other approaches that use hard-coded prior knowledge for pattern matching. We perform a series of experiments to validate our method using DARPA’s Grand Challenge Problem (GCP) datasets and the DEF CON 9 datasets. The results show that our approach can discover new patterns of attack relationships when the alerts of attacks are statistically correlated. More... »

PAGES

73-93

References to SciGraph publications

  • 2002-06. Proactive Intrusion Detection and Distributed Denial of Service Attacks—A Case Study in Security Management in JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT
  • 1995. Event Correlation using Rule and Object Based Techniques in INTEGRATED NETWORK MANAGEMENT IV
  • 1995. A Coding Approach to Event Correlation in INTEGRATED NETWORK MANAGEMENT IV
  • 2001-09-27. Aggregation and Correlation of Intrusion-Detection Alerts in RECENT ADVANCES IN INTRUSION DETECTION
  • 2001-09-27. Probabilistic Alert Correlation in RECENT ADVANCES IN INTRUSION DETECTION
  • 2002. Analyzing Intensive Intrusion Alerts via Correlation in RECENT ADVANCES IN INTRUSION DETECTION
  • 2002. A Mission-Impact-Based Approach to INFOSEC Alarm Correlation in RECENT ADVANCES IN INTRUSION DETECTION
  • Book

    TITLE

    Recent Advances in Intrusion Detection

    ISBN

    978-3-540-40878-9
    978-3-540-45248-5

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-45248-5_5

    DOI

    http://dx.doi.org/10.1007/978-3-540-45248-5_5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040339087


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Georgia Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "Georgia Institute of Technology, College of Computing, 30332, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qin", 
            "givenName": "Xinzhou", 
            "id": "sg:person.016165000537.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016165000537.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Georgia Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "Georgia Institute of Technology, College of Computing, 30332, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Wenke", 
            "id": "sg:person.014402357505.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402357505.82"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/586110.586144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005140811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36084-0_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014116851", 
              "https://doi.org/10.1007/3-540-36084-0_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45474-8_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028240787", 
              "https://doi.org/10.1007/3-540-45474-8_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45474-8_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028240787", 
              "https://doi.org/10.1007/3-540-45474-8_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-34890-2_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029366571", 
              "https://doi.org/10.1007/978-0-387-34890-2_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-34890-2_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032937365", 
              "https://doi.org/10.1007/978-0-387-34890-2_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36084-0_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033538885", 
              "https://doi.org/10.1007/3-540-36084-0_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45474-8_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045138349", 
              "https://doi.org/10.1007/3-540-45474-8_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45474-8_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045138349", 
              "https://doi.org/10.1007/3-540-45474-8_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/775047.775101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047028566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015910917349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047385361", 
              "https://doi.org/10.1023/a:1015910917349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/65.2.297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059418747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/65.244794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061205410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msecp.2003.1176995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061421770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1912791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069640326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infcom.1993.253408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086265988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611972726.13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088799864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/discex.2003.1194892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093692431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/secpri.2002.1004372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094346769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/secpri.2002.1004372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094346769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/inm.2001.918069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094983441"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003", 
        "datePublishedReg": "2003-01-01", 
        "description": "With the increasingly widespread deployment of security mechanisms, such as firewalls, intrusion detection systems (IDSs), antivirus software and authentication services, the problem of alert analysis has become very important. The large amount of alerts can overwhelm security administrators and prevent them from adequately understanding and analyzing the security state of the network, and initiating appropriate response in a timely fashion. Recently, several approaches for alert correlation and attack scenario analysis have been proposed. However, these approaches all have limited capabilities in detecting new attack scenarios. In this paper, we study the problem of security alert correlation with an emphasis on attack scenario analysis. In our framework, we use clustering techniques to process low-level alert data into high-level aggregated alerts, and conduct causal analysis based on statistical tests to discover new relationships among attacks. Our statistical causality approach complements other approaches that use hard-coded prior knowledge for pattern matching. We perform a series of experiments to validate our method using DARPA\u2019s Grand Challenge Problem (GCP) datasets and the DEF CON 9 datasets. The results show that our approach can discover new patterns of attack relationships when the alerts of attacks are statistically correlated.", 
        "editor": [
          {
            "familyName": "Vigna", 
            "givenName": "Giovanni", 
            "type": "Person"
          }, 
          {
            "familyName": "Kruegel", 
            "givenName": "Christopher", 
            "type": "Person"
          }, 
          {
            "familyName": "Jonsson", 
            "givenName": "Erland", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-45248-5_5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-40878-9", 
            "978-3-540-45248-5"
          ], 
          "name": "Recent Advances in Intrusion Detection", 
          "type": "Book"
        }, 
        "name": "Statistical Causality Analysis of INFOSEC Alert Data", 
        "pagination": "73-93", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040339087"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-45248-5_5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c028831e1902f4d40ca7c3c1ee65927f2a3cdf8911176548e9947d844e317ded"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-45248-5_5", 
          "https://app.dimensions.ai/details/publication/pub.1040339087"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-45248-5_5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45248-5_5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45248-5_5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45248-5_5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45248-5_5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    143 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-45248-5_5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ne5c1cc70924e4b9ab452e0824c05ec16
    4 schema:citation sg:pub.10.1007/3-540-36084-0_5
    5 sg:pub.10.1007/3-540-36084-0_6
    6 sg:pub.10.1007/3-540-45474-8_4
    7 sg:pub.10.1007/3-540-45474-8_6
    8 sg:pub.10.1007/978-0-387-34890-2_24
    9 sg:pub.10.1007/978-0-387-34890-2_25
    10 sg:pub.10.1023/a:1015910917349
    11 https://doi.org/10.1093/biomet/65.2.297
    12 https://doi.org/10.1109/65.244794
    13 https://doi.org/10.1109/discex.2003.1194892
    14 https://doi.org/10.1109/infcom.1993.253408
    15 https://doi.org/10.1109/inm.2001.918069
    16 https://doi.org/10.1109/msecp.2003.1176995
    17 https://doi.org/10.1109/secpri.2002.1004372
    18 https://doi.org/10.1137/1.9781611972726.13
    19 https://doi.org/10.1145/586110.586144
    20 https://doi.org/10.1145/775047.775101
    21 https://doi.org/10.2307/1912791
    22 schema:datePublished 2003
    23 schema:datePublishedReg 2003-01-01
    24 schema:description With the increasingly widespread deployment of security mechanisms, such as firewalls, intrusion detection systems (IDSs), antivirus software and authentication services, the problem of alert analysis has become very important. The large amount of alerts can overwhelm security administrators and prevent them from adequately understanding and analyzing the security state of the network, and initiating appropriate response in a timely fashion. Recently, several approaches for alert correlation and attack scenario analysis have been proposed. However, these approaches all have limited capabilities in detecting new attack scenarios. In this paper, we study the problem of security alert correlation with an emphasis on attack scenario analysis. In our framework, we use clustering techniques to process low-level alert data into high-level aggregated alerts, and conduct causal analysis based on statistical tests to discover new relationships among attacks. Our statistical causality approach complements other approaches that use hard-coded prior knowledge for pattern matching. We perform a series of experiments to validate our method using DARPA’s Grand Challenge Problem (GCP) datasets and the DEF CON 9 datasets. The results show that our approach can discover new patterns of attack relationships when the alerts of attacks are statistically correlated.
    25 schema:editor Ncfbe1190e988422ea3ae5fb4e4931671
    26 schema:genre chapter
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N842373e0924245d7bdf11e3545c90656
    30 schema:name Statistical Causality Analysis of INFOSEC Alert Data
    31 schema:pagination 73-93
    32 schema:productId N37f5767255044f869650c4c3f92d5e15
    33 N5a33966c9f9042778b7b06d94c245ffa
    34 Nbc149b0049284bf6baca9fb09fdd5db2
    35 schema:publisher Nd49212edb7b7478fa76694f046d5454e
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040339087
    37 https://doi.org/10.1007/978-3-540-45248-5_5
    38 schema:sdDatePublished 2019-04-16T08:01
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N553c5a14bbe34b1a8787773275cf43cc
    41 schema:url https://link.springer.com/10.1007%2F978-3-540-45248-5_5
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset chapters
    44 rdf:type schema:Chapter
    45 N37f5767255044f869650c4c3f92d5e15 schema:name dimensions_id
    46 schema:value pub.1040339087
    47 rdf:type schema:PropertyValue
    48 N4f5b3dd0151448e1bb34cac4fc08512a schema:familyName Kruegel
    49 schema:givenName Christopher
    50 rdf:type schema:Person
    51 N553c5a14bbe34b1a8787773275cf43cc schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N5a33966c9f9042778b7b06d94c245ffa schema:name doi
    54 schema:value 10.1007/978-3-540-45248-5_5
    55 rdf:type schema:PropertyValue
    56 N5ed74b3814424403a2ca25567d9f2804 schema:familyName Vigna
    57 schema:givenName Giovanni
    58 rdf:type schema:Person
    59 N774dccf2f11e49d2ab444af6472fdcf7 rdf:first N4f5b3dd0151448e1bb34cac4fc08512a
    60 rdf:rest Nb4acd03655da4850a859d5b43953cf87
    61 N842373e0924245d7bdf11e3545c90656 schema:isbn 978-3-540-40878-9
    62 978-3-540-45248-5
    63 schema:name Recent Advances in Intrusion Detection
    64 rdf:type schema:Book
    65 N96aad79790e14de0abeec0ff2d0f7f79 schema:familyName Jonsson
    66 schema:givenName Erland
    67 rdf:type schema:Person
    68 Nb46307cf06f64ae38b5d7e3621256207 rdf:first sg:person.014402357505.82
    69 rdf:rest rdf:nil
    70 Nb4acd03655da4850a859d5b43953cf87 rdf:first N96aad79790e14de0abeec0ff2d0f7f79
    71 rdf:rest rdf:nil
    72 Nbc149b0049284bf6baca9fb09fdd5db2 schema:name readcube_id
    73 schema:value c028831e1902f4d40ca7c3c1ee65927f2a3cdf8911176548e9947d844e317ded
    74 rdf:type schema:PropertyValue
    75 Ncfbe1190e988422ea3ae5fb4e4931671 rdf:first N5ed74b3814424403a2ca25567d9f2804
    76 rdf:rest N774dccf2f11e49d2ab444af6472fdcf7
    77 Nd49212edb7b7478fa76694f046d5454e schema:location Berlin, Heidelberg
    78 schema:name Springer Berlin Heidelberg
    79 rdf:type schema:Organisation
    80 Ne5c1cc70924e4b9ab452e0824c05ec16 rdf:first sg:person.016165000537.89
    81 rdf:rest Nb46307cf06f64ae38b5d7e3621256207
    82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Information and Computing Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Artificial Intelligence and Image Processing
    87 rdf:type schema:DefinedTerm
    88 sg:person.014402357505.82 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
    89 schema:familyName Lee
    90 schema:givenName Wenke
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402357505.82
    92 rdf:type schema:Person
    93 sg:person.016165000537.89 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
    94 schema:familyName Qin
    95 schema:givenName Xinzhou
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016165000537.89
    97 rdf:type schema:Person
    98 sg:pub.10.1007/3-540-36084-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014116851
    99 https://doi.org/10.1007/3-540-36084-0_5
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/3-540-36084-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033538885
    102 https://doi.org/10.1007/3-540-36084-0_6
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/3-540-45474-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045138349
    105 https://doi.org/10.1007/3-540-45474-8_4
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/3-540-45474-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028240787
    108 https://doi.org/10.1007/3-540-45474-8_6
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-0-387-34890-2_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032937365
    111 https://doi.org/10.1007/978-0-387-34890-2_24
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-0-387-34890-2_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029366571
    114 https://doi.org/10.1007/978-0-387-34890-2_25
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1023/a:1015910917349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047385361
    117 https://doi.org/10.1023/a:1015910917349
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1093/biomet/65.2.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418747
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/65.244794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061205410
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/discex.2003.1194892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093692431
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/infcom.1993.253408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086265988
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/inm.2001.918069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094983441
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/msecp.2003.1176995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061421770
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/secpri.2002.1004372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094346769
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1137/1.9781611972726.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088799864
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1145/586110.586144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005140811
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/775047.775101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047028566
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.2307/1912791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640326
    140 rdf:type schema:CreativeWork
    141 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
    142 schema:name Georgia Institute of Technology, College of Computing, 30332, Atlanta, GA, USA
    143 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...