KB-Grid: Towards Building Large-Scale Knowledge System in Semantic Web View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Huajun Chen , Zhaohui Wu , Jiefeng Xu

ABSTRACT

The emerging Semantic Web will result in an enormous amount of Web Knowledge Base (webKB) resources. However, what’s the proper way for organizing and managing those webKBs? How does the inference happen in Semantic Web where so heterogeneous and decentralized KBs are involved? This paper introduces a grid architecture in term of the Knowledge Base Grid (KB-Grid) for semantic web to address aforementioned challenges. We first review the “knowledge” and “semantic” requirements of future web. Then we articulate the core components of KB-Grid: a knowledge server as the web container for knowledge, a semantic browser as the user interface for semantic query answering and the KB-MDS as the meta-directory for webKB resources discovery and registration.A Petri-net based inference model for semantic web were also introduced. More... »

PAGES

1381-1388

References to SciGraph publications

  • 2001-05. The Semantic Web in SCIENTIFIC AMERICAN
  • Book

    TITLE

    Knowledge-Based Intelligent Information and Engineering Systems

    ISBN

    978-3-540-40804-8
    978-3-540-45226-3

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-45226-3_187

    DOI

    http://dx.doi.org/10.1007/978-3-540-45226-3_187

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026392630


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R.China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Huajun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R.China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Zhaohui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R.China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Jiefeng", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/0470867167.ch8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008073199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0501-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056527616", 
              "https://doi.org/10.1038/scientificamerican0501-34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mis.2002.1039835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061405559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/109434200101500302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063976913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/109434200101500302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063976913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/hpdc.2001.945188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095581956"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003", 
        "datePublishedReg": "2003-01-01", 
        "description": "The emerging Semantic Web will result in an enormous amount of Web Knowledge Base (webKB) resources. However, what\u2019s the proper way for organizing and managing those webKBs? How does the inference happen in Semantic Web where so heterogeneous and decentralized KBs are involved? This paper introduces a grid architecture in term of the Knowledge Base Grid (KB-Grid) for semantic web to address aforementioned challenges. We first review the \u201cknowledge\u201d and \u201csemantic\u201d requirements of future web. Then we articulate the core components of KB-Grid: a knowledge server as the web container for knowledge, a semantic browser as the user interface for semantic query answering and the KB-MDS as the meta-directory for webKB resources discovery and registration.A Petri-net based inference model for semantic web were also introduced.", 
        "editor": [
          {
            "familyName": "Palade", 
            "givenName": "Vasile", 
            "type": "Person"
          }, 
          {
            "familyName": "Howlett", 
            "givenName": "Robert J.", 
            "type": "Person"
          }, 
          {
            "familyName": "Jain", 
            "givenName": "Lakhmi", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-45226-3_187", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-40804-8", 
            "978-3-540-45226-3"
          ], 
          "name": "Knowledge-Based Intelligent Information and Engineering Systems", 
          "type": "Book"
        }, 
        "name": "KB-Grid: Towards Building Large-Scale Knowledge System in Semantic Web", 
        "pagination": "1381-1388", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026392630"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-45226-3_187"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7dbbccd0cc3aba808c88cb35dc2d80e8e7967d0da61e1f4698d126c0edbc15ce"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-45226-3_187", 
          "https://app.dimensions.ai/details/publication/pub.1026392630"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-45226-3_187"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45226-3_187'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45226-3_187'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45226-3_187'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45226-3_187'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-45226-3_187 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N7dc7f22f889b4ab6a9fc45f529a8f30e
    4 schema:citation sg:pub.10.1038/scientificamerican0501-34
    5 https://doi.org/10.1002/0470867167.ch8
    6 https://doi.org/10.1109/hpdc.2001.945188
    7 https://doi.org/10.1109/mis.2002.1039835
    8 https://doi.org/10.1177/109434200101500302
    9 schema:datePublished 2003
    10 schema:datePublishedReg 2003-01-01
    11 schema:description The emerging Semantic Web will result in an enormous amount of Web Knowledge Base (webKB) resources. However, what’s the proper way for organizing and managing those webKBs? How does the inference happen in Semantic Web where so heterogeneous and decentralized KBs are involved? This paper introduces a grid architecture in term of the Knowledge Base Grid (KB-Grid) for semantic web to address aforementioned challenges. We first review the “knowledge” and “semantic” requirements of future web. Then we articulate the core components of KB-Grid: a knowledge server as the web container for knowledge, a semantic browser as the user interface for semantic query answering and the KB-MDS as the meta-directory for webKB resources discovery and registration.A Petri-net based inference model for semantic web were also introduced.
    12 schema:editor N7f80c159866a4a0f8aa0ceed1aed9e9a
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Nd97e8137092b42a191ad300a586144df
    17 schema:name KB-Grid: Towards Building Large-Scale Knowledge System in Semantic Web
    18 schema:pagination 1381-1388
    19 schema:productId N20279c0c67e8482192d0940c2f2c6dd0
    20 N6ebce09ce53c43cf8ddec33405a695f5
    21 N9047dd68cd7649569c9806c45a8890a9
    22 schema:publisher N31a730890454496c88f9fff37a63affe
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026392630
    24 https://doi.org/10.1007/978-3-540-45226-3_187
    25 schema:sdDatePublished 2019-04-16T08:36
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Nde1bb1f96b034969ae8a75e24ba301cf
    28 schema:url https://link.springer.com/10.1007%2F978-3-540-45226-3_187
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N0712868bb01a4036ae9d794d2c3648f4 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    33 schema:familyName Xu
    34 schema:givenName Jiefeng
    35 rdf:type schema:Person
    36 N124bb00f0ac14a3289a9970861fae708 rdf:first N9d9636b3dca14303aac20c8d8167601e
    37 rdf:rest N719aad2583db45b9b050fe5c10b8f7f0
    38 N1dc81fd1fba84a64b20f70d1d5782482 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    39 schema:familyName Wu
    40 schema:givenName Zhaohui
    41 rdf:type schema:Person
    42 N20279c0c67e8482192d0940c2f2c6dd0 schema:name dimensions_id
    43 schema:value pub.1026392630
    44 rdf:type schema:PropertyValue
    45 N22164508696e407f8bb42c0f8f757d97 rdf:first N1dc81fd1fba84a64b20f70d1d5782482
    46 rdf:rest N8a6a90508c514898bceb41a9b4e832d5
    47 N31a730890454496c88f9fff37a63affe schema:location Berlin, Heidelberg
    48 schema:name Springer Berlin Heidelberg
    49 rdf:type schema:Organisation
    50 N40d9cfcd06224e32bf06ed917c0cb70d schema:familyName Palade
    51 schema:givenName Vasile
    52 rdf:type schema:Person
    53 N5cbb766d670843f990ddc94cf959d504 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    54 schema:familyName Chen
    55 schema:givenName Huajun
    56 rdf:type schema:Person
    57 N6ebce09ce53c43cf8ddec33405a695f5 schema:name readcube_id
    58 schema:value 7dbbccd0cc3aba808c88cb35dc2d80e8e7967d0da61e1f4698d126c0edbc15ce
    59 rdf:type schema:PropertyValue
    60 N719aad2583db45b9b050fe5c10b8f7f0 rdf:first N90cf70a4e5eb402ba421367e739b5433
    61 rdf:rest rdf:nil
    62 N7dc7f22f889b4ab6a9fc45f529a8f30e rdf:first N5cbb766d670843f990ddc94cf959d504
    63 rdf:rest N22164508696e407f8bb42c0f8f757d97
    64 N7f80c159866a4a0f8aa0ceed1aed9e9a rdf:first N40d9cfcd06224e32bf06ed917c0cb70d
    65 rdf:rest N124bb00f0ac14a3289a9970861fae708
    66 N8a6a90508c514898bceb41a9b4e832d5 rdf:first N0712868bb01a4036ae9d794d2c3648f4
    67 rdf:rest rdf:nil
    68 N9047dd68cd7649569c9806c45a8890a9 schema:name doi
    69 schema:value 10.1007/978-3-540-45226-3_187
    70 rdf:type schema:PropertyValue
    71 N90cf70a4e5eb402ba421367e739b5433 schema:familyName Jain
    72 schema:givenName Lakhmi
    73 rdf:type schema:Person
    74 N9d9636b3dca14303aac20c8d8167601e schema:familyName Howlett
    75 schema:givenName Robert J.
    76 rdf:type schema:Person
    77 Nd97e8137092b42a191ad300a586144df schema:isbn 978-3-540-40804-8
    78 978-3-540-45226-3
    79 schema:name Knowledge-Based Intelligent Information and Engineering Systems
    80 rdf:type schema:Book
    81 Nde1bb1f96b034969ae8a75e24ba301cf schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Information and Computing Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Information Systems
    88 rdf:type schema:DefinedTerm
    89 sg:pub.10.1038/scientificamerican0501-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056527616
    90 https://doi.org/10.1038/scientificamerican0501-34
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1002/0470867167.ch8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008073199
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1109/hpdc.2001.945188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095581956
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1109/mis.2002.1039835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061405559
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1177/109434200101500302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063976913
    99 rdf:type schema:CreativeWork
    100 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
    101 schema:name College of Computer Science, Zhejiang University, 310027, Hangzhou, P.R.China
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...