Supervised and Unsupervised Analysis Applied to Strombolian E.Q. View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Cinzia Avossa , Flora Giudicepietro , Maria Marinaro , Silvia Scarpetta

ABSTRACT

In this paper we analyze seismic signals recorded in September 1997 in Stromboli (Sicily) during explosive eruptions. First, we analyze the data via an unsupervised techniques using the Mixture of Gaussians algorithm (MoG) and the Principal Component Analysis (PCA) to discover the structure of the data. Experts distinguish two types of signals related to two different type of Strombolian explosive eruptions (Type 1 and Type 2). Using the MoG algorithm we can distinguish two classes that, with a good agreement, correspond to the two types of explosions given by experts. As a second step, we implement an supervised automatic system in order to discriminate between the two different types of explosive eruptions. The automatic system based on the MLP achieve a correct classification percentage of more then 98% on the test set (and 100% on the training). More... »

PAGES

173-178

Book

TITLE

Neural Nets

ISBN

978-3-540-20227-1
978-3-540-45216-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-45216-4_19

DOI

http://dx.doi.org/10.1007/978-3-540-45216-4_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025415244


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica \u201cE.R.Caianiello\u201d, Univ. di Salerno, 84081, Baronissi, SA", 
            "INFM Sezione di Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Avossa", 
        "givenName": "Cinzia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INGV Osservatorio Vesuviano, Via Diocleziono, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giudicepietro", 
        "givenName": "Flora", 
        "id": "sg:person.012176375607.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176375607.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica \u201cE.R.Caianiello\u201d, Univ. di Salerno, 84081, Baronissi, SA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinaro", 
        "givenName": "Maria", 
        "id": "sg:person.01027564003.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027564003.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Fisica \u201cE.R.Caianiello\u201d, Univ. di Salerno, 84081, Baronissi, SA", 
            "INFM Sezione di Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scarpetta", 
        "givenName": "Silvia", 
        "id": "sg:person.01134412304.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134412304.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2002jb001919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037464613"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "In this paper we analyze seismic signals recorded in September 1997 in Stromboli (Sicily) during explosive eruptions. First, we analyze the data via an unsupervised techniques using the Mixture of Gaussians algorithm (MoG) and the Principal Component Analysis (PCA) to discover the structure of the data. Experts distinguish two types of signals related to two different type of Strombolian explosive eruptions (Type 1 and Type 2). Using the MoG algorithm we can distinguish two classes that, with a good agreement, correspond to the two types of explosions given by experts. As a second step, we implement an supervised automatic system in order to discriminate between the two different types of explosive eruptions. The automatic system based on the MLP achieve a correct classification percentage of more then 98% on the test set (and 100% on the training).", 
    "editor": [
      {
        "familyName": "Apolloni", 
        "givenName": "Bruno", 
        "type": "Person"
      }, 
      {
        "familyName": "Marinaro", 
        "givenName": "Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Tagliaferri", 
        "givenName": "Roberto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-45216-4_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-20227-1", 
        "978-3-540-45216-4"
      ], 
      "name": "Neural Nets", 
      "type": "Book"
    }, 
    "name": "Supervised and Unsupervised Analysis Applied to Strombolian E.Q.", 
    "pagination": "173-178", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025415244"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-45216-4_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7914952a741bd37c6bb3961293df157004c1f8d4beb45aee9b522c5a6a9f3522"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-45216-4_19", 
      "https://app.dimensions.ai/details/publication/pub.1025415244"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71680_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-45216-4_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45216-4_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45216-4_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45216-4_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45216-4_19'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-45216-4_19 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndc4605e74dcf4cca81d62f3bce8d6bff
4 schema:citation https://doi.org/10.1029/2002jb001919
5 schema:datePublished 2003
6 schema:datePublishedReg 2003-01-01
7 schema:description In this paper we analyze seismic signals recorded in September 1997 in Stromboli (Sicily) during explosive eruptions. First, we analyze the data via an unsupervised techniques using the Mixture of Gaussians algorithm (MoG) and the Principal Component Analysis (PCA) to discover the structure of the data. Experts distinguish two types of signals related to two different type of Strombolian explosive eruptions (Type 1 and Type 2). Using the MoG algorithm we can distinguish two classes that, with a good agreement, correspond to the two types of explosions given by experts. As a second step, we implement an supervised automatic system in order to discriminate between the two different types of explosive eruptions. The automatic system based on the MLP achieve a correct classification percentage of more then 98% on the test set (and 100% on the training).
8 schema:editor Nbf1e48deabb94a46ac1a34227b66f45c
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N82591ac324ed4e8c8af55efea2e5df28
13 schema:name Supervised and Unsupervised Analysis Applied to Strombolian E.Q.
14 schema:pagination 173-178
15 schema:productId N09be59580ecd48febaf91db9f646e863
16 N7c99fc6254614296af40efd78e9f4c49
17 Nf3ee34e3fadd406682361699f1b31111
18 schema:publisher Nf894fe526cbd40a9902a2fb8515bb032
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415244
20 https://doi.org/10.1007/978-3-540-45216-4_19
21 schema:sdDatePublished 2019-04-16T08:35
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N05ce35048c6f427d8d8d2e25308cf79e
24 schema:url https://link.springer.com/10.1007%2F978-3-540-45216-4_19
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N05ce35048c6f427d8d8d2e25308cf79e schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N09be59580ecd48febaf91db9f646e863 schema:name dimensions_id
31 schema:value pub.1025415244
32 rdf:type schema:PropertyValue
33 N1345b3aec56e429c999005a5472d62e0 schema:affiliation N8af389d914c74179884b3f68934af6ff
34 schema:familyName Avossa
35 schema:givenName Cinzia
36 rdf:type schema:Person
37 N2493693480164ff3af8dc4efdf90d18b schema:name Dipartimento di Fisica “E.R.Caianiello”, Univ. di Salerno, 84081, Baronissi, SA
38 INFM Sezione di Salerno, Italy
39 rdf:type schema:Organization
40 N41c8c177780444ac81198c544491f960 rdf:first Nf35c7689581641d6b5f7ef127db96081
41 rdf:rest Na859b8f7525c4a1dba5e501de422d49f
42 N5827e84d0bfc41f29418c525cd080800 schema:name Dipartimento di Fisica “E.R.Caianiello”, Univ. di Salerno, 84081, Baronissi, SA
43 rdf:type schema:Organization
44 N79f31e2aa22a480f93ee149ba1e327c6 rdf:first sg:person.01134412304.81
45 rdf:rest rdf:nil
46 N7c99fc6254614296af40efd78e9f4c49 schema:name readcube_id
47 schema:value 7914952a741bd37c6bb3961293df157004c1f8d4beb45aee9b522c5a6a9f3522
48 rdf:type schema:PropertyValue
49 N82591ac324ed4e8c8af55efea2e5df28 schema:isbn 978-3-540-20227-1
50 978-3-540-45216-4
51 schema:name Neural Nets
52 rdf:type schema:Book
53 N8af389d914c74179884b3f68934af6ff schema:name Dipartimento di Fisica “E.R.Caianiello”, Univ. di Salerno, 84081, Baronissi, SA
54 INFM Sezione di Salerno, Italy
55 rdf:type schema:Organization
56 Na859b8f7525c4a1dba5e501de422d49f rdf:first Nde9b12083d934f7d8fd3fa972ec61f56
57 rdf:rest rdf:nil
58 Nab652f8b44044694af208a81a38f6766 rdf:first sg:person.01027564003.17
59 rdf:rest N79f31e2aa22a480f93ee149ba1e327c6
60 Nb500563ed0dd40cd83d53e1bac621b93 schema:familyName Apolloni
61 schema:givenName Bruno
62 rdf:type schema:Person
63 Nbf1e48deabb94a46ac1a34227b66f45c rdf:first Nb500563ed0dd40cd83d53e1bac621b93
64 rdf:rest N41c8c177780444ac81198c544491f960
65 Ndc4605e74dcf4cca81d62f3bce8d6bff rdf:first N1345b3aec56e429c999005a5472d62e0
66 rdf:rest Ne5922813c4bf4c5899fa25dcd5414c70
67 Nde9b12083d934f7d8fd3fa972ec61f56 schema:familyName Tagliaferri
68 schema:givenName Roberto
69 rdf:type schema:Person
70 Ne5922813c4bf4c5899fa25dcd5414c70 rdf:first sg:person.012176375607.09
71 rdf:rest Nab652f8b44044694af208a81a38f6766
72 Ne96a4c0b2b5e44ca8107a1ee3c9edc25 schema:name INGV Osservatorio Vesuviano, Via Diocleziono, Napoli, Italy
73 rdf:type schema:Organization
74 Nf35c7689581641d6b5f7ef127db96081 schema:familyName Marinaro
75 schema:givenName Maria
76 rdf:type schema:Person
77 Nf3ee34e3fadd406682361699f1b31111 schema:name doi
78 schema:value 10.1007/978-3-540-45216-4_19
79 rdf:type schema:PropertyValue
80 Nf894fe526cbd40a9902a2fb8515bb032 schema:location Berlin, Heidelberg
81 schema:name Springer Berlin Heidelberg
82 rdf:type schema:Organisation
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:person.01027564003.17 schema:affiliation N5827e84d0bfc41f29418c525cd080800
90 schema:familyName Marinaro
91 schema:givenName Maria
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027564003.17
93 rdf:type schema:Person
94 sg:person.01134412304.81 schema:affiliation N2493693480164ff3af8dc4efdf90d18b
95 schema:familyName Scarpetta
96 schema:givenName Silvia
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134412304.81
98 rdf:type schema:Person
99 sg:person.012176375607.09 schema:affiliation Ne96a4c0b2b5e44ca8107a1ee3c9edc25
100 schema:familyName Giudicepietro
101 schema:givenName Flora
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176375607.09
103 rdf:type schema:Person
104 https://doi.org/10.1029/2002jb001919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037464613
105 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...