Emission Spectrum of Random Lasers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-09-13

AUTHORS

Gregor Hackenbroich , Fritz Haake

ABSTRACT

In recent years advances in microstructuring techniques have made it possible to manufacture novel mirrorless cavities known as random lasers. Examples for this new type of laser include strongly disordered semiconductors [1, 2], polymer systems [3], solutions of TiO2 nanoparticles [4, 5], as well as synthetic opals infiltrated with laser dyes [6]. The feedback in random lasers is provided by the random scattering of light in a dielectric with a spatially fluctuating refractive index. Light amplification results from the interaction with a medium of active atoms. The interest in random lasers is motivated both by possible applications and by their novel emission properties. Due to their intrinsic randomness such lasers often emit light in a large solid angle (up to 4 π). Moreover, random lasers are cheap and can easily be designed with different shape and size. These properties may prove useful for applications in computer displays and photonic devices. In this paper we discuss our present theoretical understanding [7, 8] of random lasers. More... »

PAGES

109-118

Book

TITLE

Anderson Localization and Its Ramifications

ISBN

978-3-540-40785-0
978-3-540-45202-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-45202-7_9

DOI

http://dx.doi.org/10.1007/978-3-540-45202-7_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046813873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fachbereich Physik, Universit\u00e4t Essen, D-45117 Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Fachbereich Physik, Universit\u00e4t Essen, D-45117 Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackenbroich", 
        "givenName": "Gregor", 
        "id": "sg:person.012241057077.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241057077.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fachbereich Physik, Universit\u00e4t Essen, D-45117 Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Fachbereich Physik, Universit\u00e4t Essen, D-45117 Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haake", 
        "givenName": "Fritz", 
        "id": "sg:person.010552604135.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552604135.08"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-09-13", 
    "datePublishedReg": "2003-09-13", 
    "description": "In recent years advances in microstructuring techniques have made it possible to manufacture novel mirrorless cavities known as random lasers. Examples for this new type of laser include strongly disordered semiconductors [1, 2], polymer systems [3], solutions of TiO2 nanoparticles [4, 5], as well as synthetic opals infiltrated with laser dyes [6]. The feedback in random lasers is provided by the random scattering of light in a dielectric with a spatially fluctuating refractive index. Light amplification results from the interaction with a medium of active atoms. The interest in random lasers is motivated both by possible applications and by their novel emission properties. Due to their intrinsic randomness such lasers often emit light in a large solid angle (up to 4 \u03c0). Moreover, random lasers are cheap and can easily be designed with different shape and size. These properties may prove useful for applications in computer displays and photonic devices. In this paper we discuss our present theoretical understanding [7, 8] of random lasers.", 
    "editor": [
      {
        "familyName": "Brandes", 
        "givenName": "Tobias", 
        "type": "Person"
      }, 
      {
        "familyName": "Kettemann", 
        "givenName": "S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-45202-7_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-40785-0", 
        "978-3-540-45202-7"
      ], 
      "name": "Anderson Localization and Its Ramifications", 
      "type": "Book"
    }, 
    "keywords": [
      "random lasers", 
      "large solid angle", 
      "novel emission properties", 
      "present theoretical understanding", 
      "such lasers", 
      "photonic devices", 
      "light amplification", 
      "refractive index", 
      "laser dyes", 
      "random scattering", 
      "solid angle", 
      "laser", 
      "synthetic opals", 
      "emission spectra", 
      "emission properties", 
      "active atoms", 
      "microstructuring techniques", 
      "possible applications", 
      "theoretical understanding", 
      "TiO2 nanoparticles", 
      "light", 
      "semiconductors", 
      "scattering", 
      "recent years advances", 
      "atoms", 
      "new type", 
      "spectra", 
      "dielectric", 
      "opals", 
      "properties", 
      "different shapes", 
      "devices", 
      "cavity", 
      "applications", 
      "polymer systems", 
      "solution", 
      "angle", 
      "nanoparticles", 
      "years advances", 
      "dye", 
      "interaction", 
      "shape", 
      "system", 
      "feedback", 
      "amplification", 
      "technique", 
      "display", 
      "medium", 
      "interest", 
      "size", 
      "index", 
      "computer display", 
      "types", 
      "example", 
      "advances", 
      "understanding", 
      "paper"
    ], 
    "name": "Emission Spectrum of Random Lasers", 
    "pagination": "109-118", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046813873"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-45202-7_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-45202-7_9", 
      "https://app.dimensions.ai/details/publication/pub.1046813873"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_116.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-45202-7_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45202-7_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45202-7_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45202-7_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45202-7_9'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-45202-7_9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N4f3babe94995451ba5cae00bb1826982
4 schema:datePublished 2003-09-13
5 schema:datePublishedReg 2003-09-13
6 schema:description In recent years advances in microstructuring techniques have made it possible to manufacture novel mirrorless cavities known as random lasers. Examples for this new type of laser include strongly disordered semiconductors [1, 2], polymer systems [3], solutions of TiO2 nanoparticles [4, 5], as well as synthetic opals infiltrated with laser dyes [6]. The feedback in random lasers is provided by the random scattering of light in a dielectric with a spatially fluctuating refractive index. Light amplification results from the interaction with a medium of active atoms. The interest in random lasers is motivated both by possible applications and by their novel emission properties. Due to their intrinsic randomness such lasers often emit light in a large solid angle (up to 4 π). Moreover, random lasers are cheap and can easily be designed with different shape and size. These properties may prove useful for applications in computer displays and photonic devices. In this paper we discuss our present theoretical understanding [7, 8] of random lasers.
7 schema:editor N0511fe5be88642d4ad0ae1c3e5893050
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N0fd558e693ae411ea7eeca7dd867ed27
11 schema:keywords TiO2 nanoparticles
12 active atoms
13 advances
14 amplification
15 angle
16 applications
17 atoms
18 cavity
19 computer display
20 devices
21 dielectric
22 different shapes
23 display
24 dye
25 emission properties
26 emission spectra
27 example
28 feedback
29 index
30 interaction
31 interest
32 large solid angle
33 laser
34 laser dyes
35 light
36 light amplification
37 medium
38 microstructuring techniques
39 nanoparticles
40 new type
41 novel emission properties
42 opals
43 paper
44 photonic devices
45 polymer systems
46 possible applications
47 present theoretical understanding
48 properties
49 random lasers
50 random scattering
51 recent years advances
52 refractive index
53 scattering
54 semiconductors
55 shape
56 size
57 solid angle
58 solution
59 spectra
60 such lasers
61 synthetic opals
62 system
63 technique
64 theoretical understanding
65 types
66 understanding
67 years advances
68 schema:name Emission Spectrum of Random Lasers
69 schema:pagination 109-118
70 schema:productId N166c626b73a34319b3ec3bc64b8c01c5
71 N499b6e431db341a39511f72821a9f71a
72 schema:publisher Necfad2a6fbc6432b8727b4deb98fe60f
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046813873
74 https://doi.org/10.1007/978-3-540-45202-7_9
75 schema:sdDatePublished 2022-12-01T06:46
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N9a8ad00b6bfb4f6e93ab9d9fd7ada218
78 schema:url https://doi.org/10.1007/978-3-540-45202-7_9
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N0511fe5be88642d4ad0ae1c3e5893050 rdf:first N2592ca6b54a6440f90ed9056b8d4d423
83 rdf:rest Ne32a80368c8c46c88681326d4c5c67d8
84 N0fd558e693ae411ea7eeca7dd867ed27 schema:isbn 978-3-540-40785-0
85 978-3-540-45202-7
86 schema:name Anderson Localization and Its Ramifications
87 rdf:type schema:Book
88 N166c626b73a34319b3ec3bc64b8c01c5 schema:name doi
89 schema:value 10.1007/978-3-540-45202-7_9
90 rdf:type schema:PropertyValue
91 N2592ca6b54a6440f90ed9056b8d4d423 schema:familyName Brandes
92 schema:givenName Tobias
93 rdf:type schema:Person
94 N499b6e431db341a39511f72821a9f71a schema:name dimensions_id
95 schema:value pub.1046813873
96 rdf:type schema:PropertyValue
97 N4d7caa36fe824b089a1a683b73482476 schema:familyName Kettemann
98 schema:givenName S.
99 rdf:type schema:Person
100 N4f3babe94995451ba5cae00bb1826982 rdf:first sg:person.012241057077.14
101 rdf:rest Nc8a2ce7c1a234314a12405dcc2d7b5c4
102 N9a8ad00b6bfb4f6e93ab9d9fd7ada218 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nc8a2ce7c1a234314a12405dcc2d7b5c4 rdf:first sg:person.010552604135.08
105 rdf:rest rdf:nil
106 Ne32a80368c8c46c88681326d4c5c67d8 rdf:first N4d7caa36fe824b089a1a683b73482476
107 rdf:rest rdf:nil
108 Necfad2a6fbc6432b8727b4deb98fe60f schema:name Springer Nature
109 rdf:type schema:Organisation
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Chemistry (incl. Structural)
115 rdf:type schema:DefinedTerm
116 sg:person.010552604135.08 schema:affiliation grid-institutes:grid.5718.b
117 schema:familyName Haake
118 schema:givenName Fritz
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552604135.08
120 rdf:type schema:Person
121 sg:person.012241057077.14 schema:affiliation grid-institutes:grid.5718.b
122 schema:familyName Hackenbroich
123 schema:givenName Gregor
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241057077.14
125 rdf:type schema:Person
126 grid-institutes:grid.5718.b schema:alternateName Fachbereich Physik, Universität Essen, D-45117 Essen, Germany
127 schema:name Fachbereich Physik, Universität Essen, D-45117 Essen, Germany
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...