Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2003

AUTHORS

P. Thomas Fletcher , Sarang Joshi , Conglin Lu , Stephen M. Pizer

ABSTRACT

The Gaussian distribution is the basis for many methods used in the statistical analysis of shape. One such method is principal component analysis, which has proven to be a powerful technique for describing the geometric variability of a population of objects. The Gaussian framework is well understood when the data being studied are elements of a Euclidean vector space. This is the case for geometric objects that are described by landmarks or dense collections of boundary points. We have been using medial representations, or m-reps, for modelling the geometry of anatomical objects. The medial parameters are not elements of a Euclidean space, and thus standard PCA is not applicable. In our previous work we have shown that the m-rep model parameters are instead elements of a Lie group. In this paper we develop the notion of a Gaussian distribution on this Lie group. We then derive the maximum likelihood estimates of the mean and the covariance of this distribution. Analogous to principal component analysis of covariance in Euclidean spaces, we define principal geodesic analysis on Lie groups for the study of anatomical variability in medially-defined objects. Results of applying this framework on a population of hippocampi in a schizophrenia study are presented. More... »

PAGES

450-462

References to SciGraph publications

  • 1997. Riemannian Manifolds, An Introduction to Curvature in NONE
  • 1986. Principal Component Analysis in NONE
  • 2000. Lie Groups in NONE
  • 1998. Active appearance models in COMPUTER VISION — ECCV’98
  • 2001-06-08. Medial Models Incorporating Object Variability for 3D Shape Analysis in INFORMATION PROCESSING IN MEDICAL IMAGING
  • 1984. Matrix Groups in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-45087-0_38

    DOI

    http://dx.doi.org/10.1007/978-3-540-45087-0_38

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010104312

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15344479


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hippocampus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Enhancement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Normal Distribution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Principal Component Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Schizophrenia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Subtraction Technique", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of North Carolina at Chapel Hill", 
              "id": "https://www.grid.ac/institutes/grid.10698.36", 
              "name": [
                "Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fletcher", 
            "givenName": "P. Thomas", 
            "id": "sg:person.01053501336.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053501336.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of North Carolina at Chapel Hill", 
              "id": "https://www.grid.ac/institutes/grid.10698.36", 
              "name": [
                "Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joshi", 
            "givenName": "Sarang", 
            "id": "sg:person.01114417310.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114417310.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of North Carolina at Chapel Hill", 
              "id": "https://www.grid.ac/institutes/grid.10698.36", 
              "name": [
                "Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Conglin", 
            "id": "sg:person.01163605764.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163605764.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of North Carolina at Chapel Hill", 
              "id": "https://www.grid.ac/institutes/grid.10698.36", 
              "name": [
                "Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pizer", 
            "givenName": "Stephen M.", 
            "id": "sg:person.01135330256.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135330256.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/b98852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003020914", 
              "https://doi.org/10.1007/b98852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b98852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003020914", 
              "https://doi.org/10.1007/b98852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5286-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009394437", 
              "https://doi.org/10.1007/978-1-4612-5286-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5286-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009394437", 
              "https://doi.org/10.1007/978-1-4612-5286-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0054760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016553609", 
              "https://doi.org/10.1007/bfb0054760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1995.1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021804206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1904-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031639131", 
              "https://doi.org/10.1007/978-1-4757-1904-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1904-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031639131", 
              "https://doi.org/10.1007/978-1-4757-1904-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1032839636", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56936-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032839636", 
              "https://doi.org/10.1007/978-3-642-56936-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56936-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032839636", 
              "https://doi.org/10.1007/978-3-642-56936-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/blms/16.2.81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038472811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45729-1_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039101446", 
              "https://doi.org/10.1007/3-540-45729-1_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45729-1_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039101446", 
              "https://doi.org/10.1007/3-540-45729-1_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/502122.502124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039606099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(78)90025-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047181784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(78)90025-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047181784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.19.11406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050689527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/42.811260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061170850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.978385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061231804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2002.1009389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0895479801383877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062881682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470316979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109489411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109489411", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1991.tb01825.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1991.tb01825.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458680"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003", 
        "datePublishedReg": "2003-01-01", 
        "description": "The Gaussian distribution is the basis for many methods used in the statistical analysis of shape. One such method is principal component analysis, which has proven to be a powerful technique for describing the geometric variability of a population of objects. The Gaussian framework is well understood when the data being studied are elements of a Euclidean vector space. This is the case for geometric objects that are described by landmarks or dense collections of boundary points. We have been using medial representations, or m-reps, for modelling the geometry of anatomical objects. The medial parameters are not elements of a Euclidean space, and thus standard PCA is not applicable. In our previous work we have shown that the m-rep model parameters are instead elements of a Lie group. In this paper we develop the notion of a Gaussian distribution on this Lie group. We then derive the maximum likelihood estimates of the mean and the covariance of this distribution. Analogous to principal component analysis of covariance in Euclidean spaces, we define principal geodesic analysis on Lie groups for the study of anatomical variability in medially-defined objects. Results of applying this framework on a population of hippocampi in a schizophrenia study are presented.", 
        "editor": [
          {
            "familyName": "Taylor", 
            "givenName": "Chris", 
            "type": "Person"
          }, 
          {
            "familyName": "Noble", 
            "givenName": "J. Alison", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-45087-0_38", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2440868", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439359", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2435562", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-540-40560-3", 
            "978-3-540-45087-0"
          ], 
          "name": "Information Processing in Medical Imaging", 
          "type": "Book"
        }, 
        "name": "Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis", 
        "pagination": "450-462", 
        "productId": [
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15344479"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010104312"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-45087-0_38"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "302350562166648f696ef9fa1328c5445e8b9de84ce42cbe196b210159bc8285"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-45087-0_38", 
          "https://app.dimensions.ai/details/publication/pub.1010104312"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72834_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-45087-0_38"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45087-0_38'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45087-0_38'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45087-0_38'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45087-0_38'


     

    This table displays all metadata directly associated to this object as RDF triples.

    230 TRIPLES      23 PREDICATES      64 URIs      38 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-45087-0_38 schema:about N0f9b43d042e14371b8bb77a49882df87
    2 N28a0fb370d6b40b992f2ba7948d44fa6
    3 N31e168ca75b741f98b502ecbf8c0dcad
    4 N34ab444a68a84d40bad044500f8e6bbb
    5 N4781a47aeb9e42a7ace75faf0d539370
    6 N4c17f023d3b642cb9cef71ddc0c2d637
    7 N5a2ce625a48149af8f9d6a5d8f951a83
    8 N5a856d4036674ad0b9dbc0ebfd4b4c1f
    9 N77142e6b7e544b48b8d107fb2ccda9a9
    10 N7aa34d1720e2478da2f24be326e493f9
    11 N8dd5b885475746ab8a675c773256b227
    12 Nb4fd7a1326d641dd97c3dbf0ca4493dd
    13 Nc9671c1924bb47e4810d2388f5d9e516
    14 Nd44a2336a1e143ad96e1d0c80a3007c1
    15 Nd87cb2bef0f143eb870370cb95e7bb2b
    16 Needc6bd200454594bd3eed6473e1e956
    17 Nf9352e4780eb4027a0723d77c31449fd
    18 anzsrc-for:01
    19 anzsrc-for:0101
    20 schema:author N7432c3ba781f4b04b71fdbb8d7e39dd1
    21 schema:citation sg:pub.10.1007/3-540-45729-1_53
    22 sg:pub.10.1007/978-1-4612-5286-3
    23 sg:pub.10.1007/978-1-4757-1904-8
    24 sg:pub.10.1007/978-3-642-56936-4
    25 sg:pub.10.1007/b98852
    26 sg:pub.10.1007/bfb0054760
    27 https://app.dimensions.ai/details/publication/pub.1032839636
    28 https://app.dimensions.ai/details/publication/pub.1109489411
    29 https://doi.org/10.1002/9780470316979
    30 https://doi.org/10.1006/cviu.1995.1004
    31 https://doi.org/10.1016/0031-3203(78)90025-0
    32 https://doi.org/10.1073/pnas.95.19.11406
    33 https://doi.org/10.1109/42.811260
    34 https://doi.org/10.1109/78.978385
    35 https://doi.org/10.1109/tmi.2002.1009389
    36 https://doi.org/10.1111/j.2517-6161.1991.tb01825.x
    37 https://doi.org/10.1112/blms/16.2.81
    38 https://doi.org/10.1137/s0895479801383877
    39 https://doi.org/10.1145/502122.502124
    40 schema:datePublished 2003
    41 schema:datePublishedReg 2003-01-01
    42 schema:description The Gaussian distribution is the basis for many methods used in the statistical analysis of shape. One such method is principal component analysis, which has proven to be a powerful technique for describing the geometric variability of a population of objects. The Gaussian framework is well understood when the data being studied are elements of a Euclidean vector space. This is the case for geometric objects that are described by landmarks or dense collections of boundary points. We have been using medial representations, or m-reps, for modelling the geometry of anatomical objects. The medial parameters are not elements of a Euclidean space, and thus standard PCA is not applicable. In our previous work we have shown that the m-rep model parameters are instead elements of a Lie group. In this paper we develop the notion of a Gaussian distribution on this Lie group. We then derive the maximum likelihood estimates of the mean and the covariance of this distribution. Analogous to principal component analysis of covariance in Euclidean spaces, we define principal geodesic analysis on Lie groups for the study of anatomical variability in medially-defined objects. Results of applying this framework on a population of hippocampi in a schizophrenia study are presented.
    43 schema:editor N95872de34c0c45908efaed35863db118
    44 schema:genre chapter
    45 schema:inLanguage en
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N679bac656d514bd8b728bab155a2aeb7
    48 schema:name Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis
    49 schema:pagination 450-462
    50 schema:productId N705b0650265a4d65882db57193d12be1
    51 N7c59518eacf142f58befb9461ffadfba
    52 Ndfe6dccfe99e49fb85b5a92c3043d283
    53 Nec2b95f292174efda3ffea208ef98f19
    54 schema:publisher N3afb060ad3dc4943824c55f76248dffe
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010104312
    56 https://doi.org/10.1007/978-3-540-45087-0_38
    57 schema:sdDatePublished 2019-04-16T08:30
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher Ne2214241f143438990a021efae14bb6c
    60 schema:url https://link.springer.com/10.1007%2F978-3-540-45087-0_38
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset chapters
    63 rdf:type schema:Chapter
    64 N055246a6dae5423e90cc0e305eb81dd4 schema:familyName Noble
    65 schema:givenName J. Alison
    66 rdf:type schema:Person
    67 N0f9b43d042e14371b8bb77a49882df87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Algorithms
    69 rdf:type schema:DefinedTerm
    70 N1dad5134291f4086b7aa8d3850a93690 schema:familyName Taylor
    71 schema:givenName Chris
    72 rdf:type schema:Person
    73 N28a0fb370d6b40b992f2ba7948d44fa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Humans
    75 rdf:type schema:DefinedTerm
    76 N31e168ca75b741f98b502ecbf8c0dcad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name Principal Component Analysis
    78 rdf:type schema:DefinedTerm
    79 N34ab444a68a84d40bad044500f8e6bbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Magnetic Resonance Imaging
    81 rdf:type schema:DefinedTerm
    82 N3afb060ad3dc4943824c55f76248dffe schema:location Berlin, Heidelberg
    83 schema:name Springer Berlin Heidelberg
    84 rdf:type schema:Organisation
    85 N3dee5f9401b6423da2023163c610464e rdf:first N055246a6dae5423e90cc0e305eb81dd4
    86 rdf:rest rdf:nil
    87 N4781a47aeb9e42a7ace75faf0d539370 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Models, Statistical
    89 rdf:type schema:DefinedTerm
    90 N4c17f023d3b642cb9cef71ddc0c2d637 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Models, Biological
    92 rdf:type schema:DefinedTerm
    93 N5a2ce625a48149af8f9d6a5d8f951a83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Computer Simulation
    95 rdf:type schema:DefinedTerm
    96 N5a856d4036674ad0b9dbc0ebfd4b4c1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Imaging, Three-Dimensional
    98 rdf:type schema:DefinedTerm
    99 N679bac656d514bd8b728bab155a2aeb7 schema:isbn 978-3-540-40560-3
    100 978-3-540-45087-0
    101 schema:name Information Processing in Medical Imaging
    102 rdf:type schema:Book
    103 N705b0650265a4d65882db57193d12be1 schema:name dimensions_id
    104 schema:value pub.1010104312
    105 rdf:type schema:PropertyValue
    106 N7432c3ba781f4b04b71fdbb8d7e39dd1 rdf:first sg:person.01053501336.52
    107 rdf:rest Ne1540209fce7439a97328efb496ef1b8
    108 N77142e6b7e544b48b8d107fb2ccda9a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Reproducibility of Results
    110 rdf:type schema:DefinedTerm
    111 N7aa34d1720e2478da2f24be326e493f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Pattern Recognition, Automated
    113 rdf:type schema:DefinedTerm
    114 N7c59518eacf142f58befb9461ffadfba schema:name doi
    115 schema:value 10.1007/978-3-540-45087-0_38
    116 rdf:type schema:PropertyValue
    117 N8dd5b885475746ab8a675c773256b227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Sensitivity and Specificity
    119 rdf:type schema:DefinedTerm
    120 N95872de34c0c45908efaed35863db118 rdf:first N1dad5134291f4086b7aa8d3850a93690
    121 rdf:rest N3dee5f9401b6423da2023163c610464e
    122 Nb364e418f6ad476bb336d44298ac5d71 rdf:first sg:person.01163605764.86
    123 rdf:rest Nfb0c6a900f604e6db233a071986be0c2
    124 Nb4fd7a1326d641dd97c3dbf0ca4493dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Normal Distribution
    126 rdf:type schema:DefinedTerm
    127 Nc9671c1924bb47e4810d2388f5d9e516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Image Interpretation, Computer-Assisted
    129 rdf:type schema:DefinedTerm
    130 Nd44a2336a1e143ad96e1d0c80a3007c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Image Enhancement
    132 rdf:type schema:DefinedTerm
    133 Nd87cb2bef0f143eb870370cb95e7bb2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Schizophrenia
    135 rdf:type schema:DefinedTerm
    136 Ndfe6dccfe99e49fb85b5a92c3043d283 schema:name readcube_id
    137 schema:value 302350562166648f696ef9fa1328c5445e8b9de84ce42cbe196b210159bc8285
    138 rdf:type schema:PropertyValue
    139 Ne1540209fce7439a97328efb496ef1b8 rdf:first sg:person.01114417310.29
    140 rdf:rest Nb364e418f6ad476bb336d44298ac5d71
    141 Ne2214241f143438990a021efae14bb6c schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 Nec2b95f292174efda3ffea208ef98f19 schema:name pubmed_id
    144 schema:value 15344479
    145 rdf:type schema:PropertyValue
    146 Needc6bd200454594bd3eed6473e1e956 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Subtraction Technique
    148 rdf:type schema:DefinedTerm
    149 Nf9352e4780eb4027a0723d77c31449fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Hippocampus
    151 rdf:type schema:DefinedTerm
    152 Nfb0c6a900f604e6db233a071986be0c2 rdf:first sg:person.01135330256.07
    153 rdf:rest rdf:nil
    154 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Mathematical Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Pure Mathematics
    159 rdf:type schema:DefinedTerm
    160 sg:grant.2435562 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-540-45087-0_38
    161 rdf:type schema:MonetaryGrant
    162 sg:grant.2439359 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-540-45087-0_38
    163 rdf:type schema:MonetaryGrant
    164 sg:grant.2440868 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-540-45087-0_38
    165 rdf:type schema:MonetaryGrant
    166 sg:person.01053501336.52 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
    167 schema:familyName Fletcher
    168 schema:givenName P. Thomas
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053501336.52
    170 rdf:type schema:Person
    171 sg:person.01114417310.29 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
    172 schema:familyName Joshi
    173 schema:givenName Sarang
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114417310.29
    175 rdf:type schema:Person
    176 sg:person.01135330256.07 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
    177 schema:familyName Pizer
    178 schema:givenName Stephen M.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135330256.07
    180 rdf:type schema:Person
    181 sg:person.01163605764.86 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
    182 schema:familyName Lu
    183 schema:givenName Conglin
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163605764.86
    185 rdf:type schema:Person
    186 sg:pub.10.1007/3-540-45729-1_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039101446
    187 https://doi.org/10.1007/3-540-45729-1_53
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/978-1-4612-5286-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009394437
    190 https://doi.org/10.1007/978-1-4612-5286-3
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/978-1-4757-1904-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639131
    193 https://doi.org/10.1007/978-1-4757-1904-8
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/978-3-642-56936-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032839636
    196 https://doi.org/10.1007/978-3-642-56936-4
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/b98852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003020914
    199 https://doi.org/10.1007/b98852
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/bfb0054760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016553609
    202 https://doi.org/10.1007/bfb0054760
    203 rdf:type schema:CreativeWork
    204 https://app.dimensions.ai/details/publication/pub.1032839636 schema:CreativeWork
    205 https://app.dimensions.ai/details/publication/pub.1109489411 schema:CreativeWork
    206 https://doi.org/10.1002/9780470316979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109489411
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/0031-3203(78)90025-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047181784
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1073/pnas.95.19.11406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050689527
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1109/42.811260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170850
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1109/78.978385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061231804
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1109/tmi.2002.1009389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694244
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1111/j.2517-6161.1991.tb01825.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458680
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1112/blms/16.2.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038472811
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1137/s0895479801383877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881682
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1145/502122.502124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039606099
    227 rdf:type schema:CreativeWork
    228 https://www.grid.ac/institutes/grid.10698.36 schema:alternateName University of North Carolina at Chapel Hill
    229 schema:name Medical Image Display and Analysis Group, University of North Carolina at Chapel Hill
    230 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...