Clustering Individuals in Non-vector Data and Predicting: A Novel Model-Based Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Kedong Luo , Jianmin Wang , Deyi Li , Jiaguang Sun

ABSTRACT

In many applications, data is non-vector in nature. For example, one might have transaction data from a dialup access system, where each customer has an observed time-series of dialups which are different on start time and dialup duration from customer to customer. It’s difficult to convert this type of data to a vector form, so that the existing algorithms oriented on vector data [5] are hard to cluster the customers with their dialup events. This paper presents an efficient model-based algorithm to cluster individuals whose data is non-vector in nature. Then we evaluate on a large data set of dialup transaction, in order to show that this algorithm is fast and scalable for clustering, and accurate for prediction. At the same time, we compare this algorithm with vector clustering algorithm by predicting accuracy, to show that the former is fitter for non-vector data than the latter. More... »

PAGES

431-435

Book

TITLE

Intelligent Data Engineering and Automated Learning

ISBN

978-3-540-40550-4
978-3-540-45080-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-45080-1_57

DOI

http://dx.doi.org/10.1007/978-3-540-45080-1_57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048525143


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Kedong", 
        "id": "sg:person.013432761405.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013432761405.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Deyi", 
        "id": "sg:person.016357107001.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357107001.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jiaguang", 
        "id": "sg:person.011411464635.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "In many applications, data is non-vector in nature. For example, one might have transaction data from a dialup access system, where each customer has an observed time-series of dialups which are different on start time and dialup duration from customer to customer. It\u2019s difficult to convert this type of data to a vector form, so that the existing algorithms oriented on vector data [5] are hard to cluster the customers with their dialup events. This paper presents an efficient model-based algorithm to cluster individuals whose data is non-vector in nature. Then we evaluate on a large data set of dialup transaction, in order to show that this algorithm is fast and scalable for clustering, and accurate for prediction. At the same time, we compare this algorithm with vector clustering algorithm by predicting accuracy, to show that the former is fitter for non-vector data than the latter.", 
    "editor": [
      {
        "familyName": "Liu", 
        "givenName": "Jiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheung", 
        "givenName": "Yiu-ming", 
        "type": "Person"
      }, 
      {
        "familyName": "Yin", 
        "givenName": "Hujun", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-45080-1_57", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-40550-4", 
        "978-3-540-45080-1"
      ], 
      "name": "Intelligent Data Engineering and Automated Learning", 
      "type": "Book"
    }, 
    "keywords": [
      "non-vector data", 
      "model-based algorithm", 
      "large data sets", 
      "vector data", 
      "types of data", 
      "access system", 
      "algorithm", 
      "transaction data", 
      "data sets", 
      "customers", 
      "start time", 
      "novel model", 
      "vector form", 
      "dialup", 
      "same time", 
      "clustering", 
      "transactions", 
      "accuracy", 
      "data", 
      "set", 
      "applications", 
      "Predicting", 
      "system", 
      "vector", 
      "example", 
      "time", 
      "order", 
      "model", 
      "prediction", 
      "fitter", 
      "nature", 
      "types", 
      "form", 
      "events", 
      "individuals", 
      "duration", 
      "paper", 
      "approach", 
      "dialup access system", 
      "dialup duration", 
      "dialup events", 
      "efficient model-based algorithm", 
      "dialup transaction"
    ], 
    "name": "Clustering Individuals in Non-vector Data and Predicting: A Novel Model-Based Approach", 
    "pagination": "431-435", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048525143"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-45080-1_57"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-45080-1_57", 
      "https://app.dimensions.ai/details/publication/pub.1048525143"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_285.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-45080-1_57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45080-1_57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45080-1_57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45080-1_57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-45080-1_57'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      70 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-45080-1_57 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N0d20a4b30e95490ca65314be903a0627
5 schema:datePublished 2003
6 schema:datePublishedReg 2003-01-01
7 schema:description In many applications, data is non-vector in nature. For example, one might have transaction data from a dialup access system, where each customer has an observed time-series of dialups which are different on start time and dialup duration from customer to customer. It’s difficult to convert this type of data to a vector form, so that the existing algorithms oriented on vector data [5] are hard to cluster the customers with their dialup events. This paper presents an efficient model-based algorithm to cluster individuals whose data is non-vector in nature. Then we evaluate on a large data set of dialup transaction, in order to show that this algorithm is fast and scalable for clustering, and accurate for prediction. At the same time, we compare this algorithm with vector clustering algorithm by predicting accuracy, to show that the former is fitter for non-vector data than the latter.
8 schema:editor Nee8814353fa94fc58d8405adc5f3d7cd
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N17c4add56b4b4c9896bf6d98ff733fae
13 schema:keywords Predicting
14 access system
15 accuracy
16 algorithm
17 applications
18 approach
19 clustering
20 customers
21 data
22 data sets
23 dialup
24 dialup access system
25 dialup duration
26 dialup events
27 dialup transaction
28 duration
29 efficient model-based algorithm
30 events
31 example
32 fitter
33 form
34 individuals
35 large data sets
36 model
37 model-based algorithm
38 nature
39 non-vector data
40 novel model
41 order
42 paper
43 prediction
44 same time
45 set
46 start time
47 system
48 time
49 transaction data
50 transactions
51 types
52 types of data
53 vector
54 vector data
55 vector form
56 schema:name Clustering Individuals in Non-vector Data and Predicting: A Novel Model-Based Approach
57 schema:pagination 431-435
58 schema:productId N0df1d5e814c5469ca42156f274c13e33
59 N2ba60d4ceaa646b0bd18f6336bb5b83a
60 schema:publisher Nac28988d0f6d45e99159413f5ffa38cd
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048525143
62 https://doi.org/10.1007/978-3-540-45080-1_57
63 schema:sdDatePublished 2022-01-01T19:17
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N29cb4b0f21d94d1ea7af7df81a5acfb0
66 schema:url https://doi.org/10.1007/978-3-540-45080-1_57
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N033e5d33b78f4c14aedb8ab6b52e7101 schema:familyName Cheung
71 schema:givenName Yiu-ming
72 rdf:type schema:Person
73 N0d20a4b30e95490ca65314be903a0627 rdf:first sg:person.013432761405.33
74 rdf:rest Ndbbe8e3d078042a5b91c27d57498be68
75 N0df1d5e814c5469ca42156f274c13e33 schema:name doi
76 schema:value 10.1007/978-3-540-45080-1_57
77 rdf:type schema:PropertyValue
78 N17c4add56b4b4c9896bf6d98ff733fae schema:isbn 978-3-540-40550-4
79 978-3-540-45080-1
80 schema:name Intelligent Data Engineering and Automated Learning
81 rdf:type schema:Book
82 N29cb4b0f21d94d1ea7af7df81a5acfb0 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N2ba60d4ceaa646b0bd18f6336bb5b83a schema:name dimensions_id
85 schema:value pub.1048525143
86 rdf:type schema:PropertyValue
87 N47af771496c94e7c88e768beb5481ad5 rdf:first N56c3ce2209de4f79b7e13d820757a0c5
88 rdf:rest rdf:nil
89 N56c3ce2209de4f79b7e13d820757a0c5 schema:familyName Yin
90 schema:givenName Hujun
91 rdf:type schema:Person
92 N84bd2154f7e0441a972e4765e5f01d3e rdf:first sg:person.011411464635.59
93 rdf:rest rdf:nil
94 N94200b22201a49579cad9543a5a356cd rdf:first sg:person.016357107001.17
95 rdf:rest N84bd2154f7e0441a972e4765e5f01d3e
96 Nac28988d0f6d45e99159413f5ffa38cd schema:name Springer Nature
97 rdf:type schema:Organisation
98 Nd1fe5ae442584f14ac2c340517de38fe schema:familyName Liu
99 schema:givenName Jiming
100 rdf:type schema:Person
101 Nd38536a9aad94c48ba0f1f29e9d5b391 rdf:first N033e5d33b78f4c14aedb8ab6b52e7101
102 rdf:rest N47af771496c94e7c88e768beb5481ad5
103 Ndbbe8e3d078042a5b91c27d57498be68 rdf:first sg:person.012303351315.43
104 rdf:rest N94200b22201a49579cad9543a5a356cd
105 Nee8814353fa94fc58d8405adc5f3d7cd rdf:first Nd1fe5ae442584f14ac2c340517de38fe
106 rdf:rest Nd38536a9aad94c48ba0f1f29e9d5b391
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information Systems
115 rdf:type schema:DefinedTerm
116 sg:person.011411464635.59 schema:affiliation grid-institutes:grid.12527.33
117 schema:familyName Sun
118 schema:givenName Jiaguang
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011411464635.59
120 rdf:type schema:Person
121 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
122 schema:familyName Wang
123 schema:givenName Jianmin
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
125 rdf:type schema:Person
126 sg:person.013432761405.33 schema:affiliation grid-institutes:grid.12527.33
127 schema:familyName Luo
128 schema:givenName Kedong
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013432761405.33
130 rdf:type schema:Person
131 sg:person.016357107001.17 schema:affiliation grid-institutes:grid.12527.33
132 schema:familyName Li
133 schema:givenName Deyi
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357107001.17
135 rdf:type schema:Person
136 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, Beijing, China
137 schema:name School of Software, Tsinghua University, Beijing, China
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...