From Tanaka’s Formula to Ito’s Formula: Distributions, Tensor Products and Local Times View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001

AUTHORS

B. Rajeev

ABSTRACT

In this article we study the classical finite dimensional Ito formula from an infinite dimensional perspective. A finite dimensional semi-martingale is represented as a semi-martingale in a (countable) Hilbert space of tempered distributions. The classical Ito formula is obtained on action by a test function from the dual space. Finite dimensional stochastic differential equations with smooth coefficients are represented as an SDE in a Hilbert space. We obtain representations of the local time process, viewed as a distribution in the space varible, in terms of a Hilbert space valued process of finite variation. A basic feature of our representation, is the role of the tensor product. More... »

PAGES

371-389

Book

TITLE

Séminaire de Probabilités XXXV

ISBN

978-3-540-41659-3
978-3-540-44671-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-44671-2_25

DOI

http://dx.doi.org/10.1007/978-3-540-44671-2_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013068276


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Statistical Institute", 
          "id": "https://www.grid.ac/institutes/grid.39953.35", 
          "name": [
            "Indian Statistical Institute, Bangalore Centre, 8th Mile Mysore Road, R.V. College P.O, 560059\u00a0Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajeev", 
        "givenName": "B.", 
        "id": "sg:person.014733667677.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733667677.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "In this article we study the classical finite dimensional Ito formula from an infinite dimensional perspective. A finite dimensional semi-martingale is represented as a semi-martingale in a (countable) Hilbert space of tempered distributions. The classical Ito formula is obtained on action by a test function from the dual space. Finite dimensional stochastic differential equations with smooth coefficients are represented as an SDE in a Hilbert space. We obtain representations of the local time process, viewed as a distribution in the space varible, in terms of a Hilbert space valued process of finite variation. A basic feature of our representation, is the role of the tensor product.", 
    "editor": [
      {
        "familyName": "Az\u00e9ma", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "familyName": "\u00c9mery", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ledoux", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Yor", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-44671-2_25", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-41659-3", 
        "978-3-540-44671-2"
      ], 
      "name": "S\u00e9minaire de Probabilit\u00e9s XXXV", 
      "type": "Book"
    }, 
    "name": "From Tanaka\u2019s Formula to Ito\u2019s Formula: Distributions, Tensor Products and Local Times", 
    "pagination": "371-389", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-44671-2_25"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e415595797ecc85ac4825248ed6b57caed5f3ea8e7672bb772c22a00034a788"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013068276"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-44671-2_25", 
      "https://app.dimensions.ai/details/publication/pub.1013068276"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000022.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-44671-2_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44671-2_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44671-2_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44671-2_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44671-2_25'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-44671-2_25 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5e165dabf8074fde8599b2de7be9059e
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description In this article we study the classical finite dimensional Ito formula from an infinite dimensional perspective. A finite dimensional semi-martingale is represented as a semi-martingale in a (countable) Hilbert space of tempered distributions. The classical Ito formula is obtained on action by a test function from the dual space. Finite dimensional stochastic differential equations with smooth coefficients are represented as an SDE in a Hilbert space. We obtain representations of the local time process, viewed as a distribution in the space varible, in terms of a Hilbert space valued process of finite variation. A basic feature of our representation, is the role of the tensor product.
7 schema:editor Nc7d93d07baed45d69a4a5ed3510ef87b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N94bf67570dfd496b9299e2462dbdf506
12 schema:name From Tanaka’s Formula to Ito’s Formula: Distributions, Tensor Products and Local Times
13 schema:pagination 371-389
14 schema:productId Ncc949bd56795400a86b40fb0392fe5ed
15 Nda46df814c0b442582b82c5adc64ef54
16 Nf22847ee60db43c2bf0c40d419f9c359
17 schema:publisher N71c234bc656e41f6988227574a4846f6
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013068276
19 https://doi.org/10.1007/978-3-540-44671-2_25
20 schema:sdDatePublished 2019-04-15T15:06
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N6e68d13e6e194ed296997596e9a58691
23 schema:url http://link.springer.com/10.1007/978-3-540-44671-2_25
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N13d8065cfd12403c8e45ac7134576ea7 schema:familyName Azéma
28 schema:givenName J.
29 rdf:type schema:Person
30 N4df1a087e6c44fb6be521688c1c7a106 schema:familyName Yor
31 schema:givenName M.
32 rdf:type schema:Person
33 N5e165dabf8074fde8599b2de7be9059e rdf:first sg:person.014733667677.87
34 rdf:rest rdf:nil
35 N6e68d13e6e194ed296997596e9a58691 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N71c234bc656e41f6988227574a4846f6 schema:location Berlin, Heidelberg
38 schema:name Springer Berlin Heidelberg
39 rdf:type schema:Organisation
40 N94bf67570dfd496b9299e2462dbdf506 schema:isbn 978-3-540-41659-3
41 978-3-540-44671-2
42 schema:name Séminaire de Probabilités XXXV
43 rdf:type schema:Book
44 N97ab55e9a8b64a5f8d72ea5433f58de8 rdf:first Na1469fc4d8d14d25ba8244f42bd34f3b
45 rdf:rest N9c488e15cbc448958dba4fc1fd7dcbc8
46 N9c488e15cbc448958dba4fc1fd7dcbc8 rdf:first N4df1a087e6c44fb6be521688c1c7a106
47 rdf:rest rdf:nil
48 N9e9c2320adc54a0387599f17b7e645ff rdf:first Nbb1b0b210ced46d188bb4609b351a53c
49 rdf:rest N97ab55e9a8b64a5f8d72ea5433f58de8
50 Na1469fc4d8d14d25ba8244f42bd34f3b schema:familyName Ledoux
51 schema:givenName M.
52 rdf:type schema:Person
53 Nbb1b0b210ced46d188bb4609b351a53c schema:familyName Émery
54 schema:givenName M.
55 rdf:type schema:Person
56 Nc7d93d07baed45d69a4a5ed3510ef87b rdf:first N13d8065cfd12403c8e45ac7134576ea7
57 rdf:rest N9e9c2320adc54a0387599f17b7e645ff
58 Ncc949bd56795400a86b40fb0392fe5ed schema:name dimensions_id
59 schema:value pub.1013068276
60 rdf:type schema:PropertyValue
61 Nda46df814c0b442582b82c5adc64ef54 schema:name readcube_id
62 schema:value 3e415595797ecc85ac4825248ed6b57caed5f3ea8e7672bb772c22a00034a788
63 rdf:type schema:PropertyValue
64 Nf22847ee60db43c2bf0c40d419f9c359 schema:name doi
65 schema:value 10.1007/978-3-540-44671-2_25
66 rdf:type schema:PropertyValue
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:person.014733667677.87 schema:affiliation https://www.grid.ac/institutes/grid.39953.35
74 schema:familyName Rajeev
75 schema:givenName B.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733667677.87
77 rdf:type schema:Person
78 https://www.grid.ac/institutes/grid.39953.35 schema:alternateName Indian Statistical Institute
79 schema:name Indian Statistical Institute, Bangalore Centre, 8th Mile Mysore Road, R.V. College P.O, 560059 Bangalore, India
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...