Integrity Constraints over Association Rules View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Artur Bykowski , Thomas Daurel , Nicolas Méger , Christophe Rigotti

ABSTRACT

In this paper, we propose to investigate the notion of integrity constraints in inductive databases. We advocate that integrity constraints can be used in this context as an abstract concept to encompass common data mining tasks such as the detection of corrupted data or of patterns that contradict the expert beliefs. To illustrate this possibility we propose a form of constraints called association map constraints to specify authorized confidence variations among the association rules. These constraints are easy to read and thus can be used to write clear specifications. We also present experiments showing that their satisfaction can be tested in practice. More... »

PAGES

306-323

References to SciGraph publications

  • 1999-03. Discovery of frequent DATALOG patterns in DATA MINING AND KNOWLEDGE DISCOVERY
  • 1998. Querying inductive databases: A case study on the MINE RULE operator in PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY
  • 2003-01. Free-Sets: A Condensed Representation of Boolean Data for the Approximation of Frequency Queries in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2002-07-18. Approximation of Frequency Queries by Means of Free-Sets in PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY
  • Book

    TITLE

    Database Support for Data Mining Applications

    ISBN

    978-3-540-22479-2
    978-3-540-44497-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-44497-8_16

    DOI

    http://dx.doi.org/10.1007/978-3-540-44497-8_16

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020818740


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut National des Sciences Appliqu\u00e9es de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15399.37", 
              "name": [
                "Laboratoire d\u2019Informatique de Recherche en Image et Syst\u00e8mes d\u2019information (LIRIS), INSA Lyon, B\u00e2timent Blaise Pascal, 69621 Cedex, Villeurbanne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bykowski", 
            "givenName": "Artur", 
            "id": "sg:person.016652325453.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652325453.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Schlumberger (France)", 
              "id": "https://www.grid.ac/institutes/grid.410410.0", 
              "name": [
                "Laboratoire d\u2019Informatique de Recherche en Image et Syst\u00e8mes d\u2019information (LIRIS), INSA Lyon, B\u00e2timent Blaise Pascal, 69621 Cedex, Villeurbanne, France", 
                "Etudes et Productions Schlumberger, 1, rue Henri Becquerel, 92142 Cedex, Clamart, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daurel", 
            "givenName": "Thomas", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut National des Sciences Appliqu\u00e9es de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15399.37", 
              "name": [
                "Laboratoire d\u2019Informatique de Recherche en Image et Syst\u00e8mes d\u2019information (LIRIS), INSA Lyon, B\u00e2timent Blaise Pascal, 69621 Cedex, Villeurbanne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00e9ger", 
            "givenName": "Nicolas", 
            "id": "sg:person.011033776133.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033776133.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut National des Sciences Appliqu\u00e9es de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15399.37", 
              "name": [
                "Laboratoire d\u2019Informatique de Recherche en Image et Syst\u00e8mes d\u2019information (LIRIS), INSA Lyon, B\u00e2timent Blaise Pascal, 69621 Cedex, Villeurbanne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rigotti", 
            "givenName": "Christophe", 
            "id": "sg:person.016577712467.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016577712467.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0306-4379(99)00003-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000463430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45372-5_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002430884", 
              "https://doi.org/10.1007/3-540-45372-5_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45372-5_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002430884", 
              "https://doi.org/10.1007/3-540-45372-5_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/240455.240472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006761471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009863704807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011882918", 
              "https://doi.org/10.1023/a:1009863704807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/312129.312216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016125043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/375551.375604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019402812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/233269.233311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019413618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/276305.276313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028415526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/170035.170072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028726331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0094820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035015916", 
              "https://doi.org/10.1007/bfb0094820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/360402.360421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044219887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021571501451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052843726", 
              "https://doi.org/10.1023/a:1021571501451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icde.1999.754924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094800571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/276304.276313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098992874"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004", 
        "datePublishedReg": "2004-01-01", 
        "description": "In this paper, we propose to investigate the notion of integrity constraints in inductive databases. We advocate that integrity constraints can be used in this context as an abstract concept to encompass common data mining tasks such as the detection of corrupted data or of patterns that contradict the expert beliefs. To illustrate this possibility we propose a form of constraints called association map constraints to specify authorized confidence variations among the association rules. These constraints are easy to read and thus can be used to write clear specifications. We also present experiments showing that their satisfaction can be tested in practice.", 
        "editor": [
          {
            "familyName": "Meo", 
            "givenName": "Rosa", 
            "type": "Person"
          }, 
          {
            "familyName": "Lanzi", 
            "givenName": "Pier Luca", 
            "type": "Person"
          }, 
          {
            "familyName": "Klemettinen", 
            "givenName": "Mika", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-44497-8_16", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-22479-2", 
            "978-3-540-44497-8"
          ], 
          "name": "Database Support for Data Mining Applications", 
          "type": "Book"
        }, 
        "name": "Integrity Constraints over Association Rules", 
        "pagination": "306-323", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020818740"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-44497-8_16"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6331c22f386dbde2a8316436d6ebcf1490e655ed95505a8fb35d6ccf87e1c3e6"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-44497-8_16", 
          "https://app.dimensions.ai/details/publication/pub.1020818740"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57871_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-44497-8_16"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44497-8_16'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44497-8_16'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44497-8_16'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44497-8_16'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-44497-8_16 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nddabf9d32d714689b0f855883e69ea12
    4 schema:citation sg:pub.10.1007/3-540-45372-5_8
    5 sg:pub.10.1007/bfb0094820
    6 sg:pub.10.1023/a:1009863704807
    7 sg:pub.10.1023/a:1021571501451
    8 https://doi.org/10.1016/s0306-4379(99)00003-4
    9 https://doi.org/10.1109/icde.1999.754924
    10 https://doi.org/10.1145/170035.170072
    11 https://doi.org/10.1145/233269.233311
    12 https://doi.org/10.1145/240455.240472
    13 https://doi.org/10.1145/276304.276313
    14 https://doi.org/10.1145/276305.276313
    15 https://doi.org/10.1145/312129.312216
    16 https://doi.org/10.1145/360402.360421
    17 https://doi.org/10.1145/375551.375604
    18 schema:datePublished 2004
    19 schema:datePublishedReg 2004-01-01
    20 schema:description In this paper, we propose to investigate the notion of integrity constraints in inductive databases. We advocate that integrity constraints can be used in this context as an abstract concept to encompass common data mining tasks such as the detection of corrupted data or of patterns that contradict the expert beliefs. To illustrate this possibility we propose a form of constraints called association map constraints to specify authorized confidence variations among the association rules. These constraints are easy to read and thus can be used to write clear specifications. We also present experiments showing that their satisfaction can be tested in practice.
    21 schema:editor Nb42a2a46f3c34e11b13f0ad422b13c7f
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N78ca413ed9f54ae1af1ff1e808f23199
    26 schema:name Integrity Constraints over Association Rules
    27 schema:pagination 306-323
    28 schema:productId N2f71e6083f3842129b5440b470a8f84b
    29 N4d2fd3a540184afcab8b35be083806a0
    30 Nbb45c42a97a943abbfc76690e137caac
    31 schema:publisher N3cac398e0c6b49bda241c35c4ebb9d12
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020818740
    33 https://doi.org/10.1007/978-3-540-44497-8_16
    34 schema:sdDatePublished 2019-04-16T07:29
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Nfdb1becb0b3b432ab07eec2353859a6e
    37 schema:url https://link.springer.com/10.1007%2F978-3-540-44497-8_16
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N2f71e6083f3842129b5440b470a8f84b schema:name doi
    42 schema:value 10.1007/978-3-540-44497-8_16
    43 rdf:type schema:PropertyValue
    44 N3cac398e0c6b49bda241c35c4ebb9d12 schema:location Berlin, Heidelberg
    45 schema:name Springer Berlin Heidelberg
    46 rdf:type schema:Organisation
    47 N4d2fd3a540184afcab8b35be083806a0 schema:name dimensions_id
    48 schema:value pub.1020818740
    49 rdf:type schema:PropertyValue
    50 N78ca413ed9f54ae1af1ff1e808f23199 schema:isbn 978-3-540-22479-2
    51 978-3-540-44497-8
    52 schema:name Database Support for Data Mining Applications
    53 rdf:type schema:Book
    54 N9aea5f99edc84726bf855b520baa75ed schema:affiliation https://www.grid.ac/institutes/grid.410410.0
    55 schema:familyName Daurel
    56 schema:givenName Thomas
    57 rdf:type schema:Person
    58 Na73eae30d8c24d4ab5afefe4ec22a40a schema:familyName Klemettinen
    59 schema:givenName Mika
    60 rdf:type schema:Person
    61 Nb2bbbaa95ec345358a83beec16fffc00 schema:familyName Lanzi
    62 schema:givenName Pier Luca
    63 rdf:type schema:Person
    64 Nb2be2bb51a3e4ac9a460e5236a12b78b rdf:first Nb2bbbaa95ec345358a83beec16fffc00
    65 rdf:rest Nc5eedc60b09645ac872698b5e29e4f3b
    66 Nb42a2a46f3c34e11b13f0ad422b13c7f rdf:first Nc6fa2d201ec64502b7d5fad9608319fd
    67 rdf:rest Nb2be2bb51a3e4ac9a460e5236a12b78b
    68 Nb8b9843ccaa84a82b4365fca463779bc rdf:first sg:person.016577712467.20
    69 rdf:rest rdf:nil
    70 Nbb3917017f8c478e9e765b78356ca7a6 rdf:first N9aea5f99edc84726bf855b520baa75ed
    71 rdf:rest Nd98e0c19b6684c29b58356e0a97fac53
    72 Nbb45c42a97a943abbfc76690e137caac schema:name readcube_id
    73 schema:value 6331c22f386dbde2a8316436d6ebcf1490e655ed95505a8fb35d6ccf87e1c3e6
    74 rdf:type schema:PropertyValue
    75 Nc5eedc60b09645ac872698b5e29e4f3b rdf:first Na73eae30d8c24d4ab5afefe4ec22a40a
    76 rdf:rest rdf:nil
    77 Nc6fa2d201ec64502b7d5fad9608319fd schema:familyName Meo
    78 schema:givenName Rosa
    79 rdf:type schema:Person
    80 Nd98e0c19b6684c29b58356e0a97fac53 rdf:first sg:person.011033776133.74
    81 rdf:rest Nb8b9843ccaa84a82b4365fca463779bc
    82 Nddabf9d32d714689b0f855883e69ea12 rdf:first sg:person.016652325453.86
    83 rdf:rest Nbb3917017f8c478e9e765b78356ca7a6
    84 Nfdb1becb0b3b432ab07eec2353859a6e schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Information and Computing Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information Systems
    91 rdf:type schema:DefinedTerm
    92 sg:person.011033776133.74 schema:affiliation https://www.grid.ac/institutes/grid.15399.37
    93 schema:familyName Méger
    94 schema:givenName Nicolas
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033776133.74
    96 rdf:type schema:Person
    97 sg:person.016577712467.20 schema:affiliation https://www.grid.ac/institutes/grid.15399.37
    98 schema:familyName Rigotti
    99 schema:givenName Christophe
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016577712467.20
    101 rdf:type schema:Person
    102 sg:person.016652325453.86 schema:affiliation https://www.grid.ac/institutes/grid.15399.37
    103 schema:familyName Bykowski
    104 schema:givenName Artur
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652325453.86
    106 rdf:type schema:Person
    107 sg:pub.10.1007/3-540-45372-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002430884
    108 https://doi.org/10.1007/3-540-45372-5_8
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bfb0094820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035015916
    111 https://doi.org/10.1007/bfb0094820
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1023/a:1009863704807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011882918
    114 https://doi.org/10.1023/a:1009863704807
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1023/a:1021571501451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052843726
    117 https://doi.org/10.1023/a:1021571501451
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0306-4379(99)00003-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000463430
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/icde.1999.754924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094800571
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1145/170035.170072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726331
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1145/233269.233311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019413618
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1145/240455.240472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006761471
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1145/276304.276313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098992874
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1145/276305.276313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028415526
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1145/312129.312216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125043
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1145/360402.360421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044219887
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/375551.375604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019402812
    138 rdf:type schema:CreativeWork
    139 https://www.grid.ac/institutes/grid.15399.37 schema:alternateName Institut National des Sciences Appliquées de Lyon
    140 schema:name Laboratoire d’Informatique de Recherche en Image et Systèmes d’information (LIRIS), INSA Lyon, Bâtiment Blaise Pascal, 69621 Cedex, Villeurbanne, France
    141 rdf:type schema:Organization
    142 https://www.grid.ac/institutes/grid.410410.0 schema:alternateName Schlumberger (France)
    143 schema:name Etudes et Productions Schlumberger, 1, rue Henri Becquerel, 92142 Cedex, Clamart, France
    144 Laboratoire d’Informatique de Recherche en Image et Systèmes d’information (LIRIS), INSA Lyon, Bâtiment Blaise Pascal, 69621 Cedex, Villeurbanne, France
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...