1-Lipschitz Aggregation Operators, Quasi-Copulas and Copulas with Given Diagonals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Erich Peter Klement , Anna Kolesárová

ABSTRACT

Copulas with given diagonals have been studied in [5, 11]. In [2, 6, 12] smallest and greatest (quasi-)copulas with given diagonals are constructed. Both (two-dimensional) copulas and quasi-copulas are special cases of binary 1-Lipschitz aggregation operators [3, 9]. We give constructions for smallest and greatest 1-Lipschitz aggregation operators with given diagonals, allowing us to obtain most results of [12] on (quasi-)copulas with given diagonals as special cases. In particular, the smallest (quasi-)copula with a given diagonal coincides with the smallest 1-Lipschitz aggregation operator with that diagonal. More... »

PAGES

205-211

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-44465-7_24

DOI

http://dx.doi.org/10.1007/978-3-540-44465-7_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029867380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klement", 
        "givenName": "Erich Peter", 
        "id": "sg:person.010620407107.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia", 
          "id": "http://www.grid.ac/institutes/grid.440789.6", 
          "name": [
            "Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koles\u00e1rov\u00e1", 
        "givenName": "Anna", 
        "id": "sg:person.013323425473.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Copulas with given diagonals have been studied in [5, 11]. In [2, 6, 12] smallest and greatest (quasi-)copulas with given diagonals are constructed. Both (two-dimensional) copulas and quasi-copulas are special cases of binary 1-Lipschitz aggregation operators [3, 9]. We give constructions for smallest and greatest 1-Lipschitz aggregation operators with given diagonals, allowing us to obtain most results of [12] on (quasi-)copulas with given diagonals as special cases. In particular, the smallest (quasi-)copula with a given diagonal coincides with the smallest 1-Lipschitz aggregation operator with that diagonal.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-44465-7_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-22264-4", 
        "978-3-540-44465-7"
      ], 
      "name": "Soft Methodology and Random Information Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "aggregation operators", 
      "quasi-copulas", 
      "special case", 
      "operators", 
      "copula", 
      "diagonals", 
      "most results", 
      "coincide", 
      "construction", 
      "cases", 
      "results", 
      "diagonal coincide"
    ], 
    "name": "1-Lipschitz Aggregation Operators, Quasi-Copulas and Copulas with Given Diagonals", 
    "pagination": "205-211", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029867380"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-44465-7_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-44465-7_24", 
      "https://app.dimensions.ai/details/publication/pub.1029867380"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_262.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-44465-7_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44465-7_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44465-7_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44465-7_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-44465-7_24'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      22 PREDICATES      37 URIs      30 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-44465-7_24 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf77bd7244b2049c2a3b0471f2db48b54
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description Copulas with given diagonals have been studied in [5, 11]. In [2, 6, 12] smallest and greatest (quasi-)copulas with given diagonals are constructed. Both (two-dimensional) copulas and quasi-copulas are special cases of binary 1-Lipschitz aggregation operators [3, 9]. We give constructions for smallest and greatest 1-Lipschitz aggregation operators with given diagonals, allowing us to obtain most results of [12] on (quasi-)copulas with given diagonals as special cases. In particular, the smallest (quasi-)copula with a given diagonal coincides with the smallest 1-Lipschitz aggregation operator with that diagonal.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne1dfd1cbc4cf4d6f92381c5e48ca03bd
11 schema:keywords aggregation operators
12 cases
13 coincide
14 construction
15 copula
16 diagonal coincide
17 diagonals
18 most results
19 operators
20 quasi-copulas
21 results
22 special case
23 schema:name 1-Lipschitz Aggregation Operators, Quasi-Copulas and Copulas with Given Diagonals
24 schema:pagination 205-211
25 schema:productId N1bbfc543824949a7afa338fc75cdf3d5
26 N8ae4946641b847fca08692f8b6f0afc2
27 schema:publisher N94ee3d6d3e9946ca90cb6e03991093bc
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867380
29 https://doi.org/10.1007/978-3-540-44465-7_24
30 schema:sdDatePublished 2022-01-01T19:15
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N5258de41aeab455db1403ddbe66d8347
33 schema:url https://doi.org/10.1007/978-3-540-44465-7_24
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N1bbfc543824949a7afa338fc75cdf3d5 schema:name doi
38 schema:value 10.1007/978-3-540-44465-7_24
39 rdf:type schema:PropertyValue
40 N5258de41aeab455db1403ddbe66d8347 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N5e379f4fcf8a4e39bd7f77ce210ae317 rdf:first sg:person.013323425473.28
43 rdf:rest rdf:nil
44 N8ae4946641b847fca08692f8b6f0afc2 schema:name dimensions_id
45 schema:value pub.1029867380
46 rdf:type schema:PropertyValue
47 N94ee3d6d3e9946ca90cb6e03991093bc schema:name Springer Nature
48 rdf:type schema:Organisation
49 Ne1dfd1cbc4cf4d6f92381c5e48ca03bd schema:isbn 978-3-540-22264-4
50 978-3-540-44465-7
51 schema:name Soft Methodology and Random Information Systems
52 rdf:type schema:Book
53 Nf77bd7244b2049c2a3b0471f2db48b54 rdf:first sg:person.010620407107.52
54 rdf:rest N5e379f4fcf8a4e39bd7f77ce210ae317
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:person.010620407107.52 schema:affiliation grid-institutes:grid.9970.7
62 schema:familyName Klement
63 schema:givenName Erich Peter
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52
65 rdf:type schema:Person
66 sg:person.013323425473.28 schema:affiliation grid-institutes:grid.440789.6
67 schema:familyName Kolesárová
68 schema:givenName Anna
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28
70 rdf:type schema:Person
71 grid-institutes:grid.440789.6 schema:alternateName Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
72 schema:name Department of Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
73 rdf:type schema:Organization
74 grid-institutes:grid.9970.7 schema:alternateName Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz, Austria
75 schema:name Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Linz, Austria
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...