Ontology type: schema:Chapter
2003
AUTHORS ABSTRACTTime modeling is a crucial feature in many application domains. However, temporal information often is not crisp, but is uncertain, subjective and vague. This is particularly true when representing historical information, as historical accounts are inherently imprecise. Similarly, we conjecture that in the Semantic Web representing uncertain temporal information will be a common requirement. Hence, existing approaches for temporal modeling based on crisp representation of time cannot be applied to these advanced modeling tasks. To overcome these difficulties, in this paper we present fuzzy interval-based temporal model capable of representing imprecise temporal knowledge. Our approach naturally subsumes existing crisp temporal models, i.e. crisp temporal relationships are intuitively represented in our system. Apart from presenting the fuzzy temporal model, we discuss how this model is integrated with the ontology model to allow annotating ontology definitions with time specifications. More... »
PAGES906-923
On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE
ISBN
978-3-540-20498-5
978-3-540-39964-3
http://scigraph.springernature.com/pub.10.1007/978-3-540-39964-3_57
DOIhttp://dx.doi.org/10.1007/978-3-540-39964-3_57
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013819270
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "FZI Research Center for Information Technologies, The University of Karlsruhe, Haid-und-Neu-Str. 10-14, 76131, Karlsruhe, Germany",
"id": "http://www.grid.ac/institutes/grid.7892.4",
"name": [
"FZI Research Center for Information Technologies, The University of Karlsruhe, Haid-und-Neu-Str. 10-14, 76131, Karlsruhe, Germany"
],
"type": "Organization"
},
"familyName": "Nagyp\u00e1l",
"givenName": "G\u00e1bor",
"id": "sg:person.016170750755.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170750755.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "FZI Research Center for Information Technologies, The University of Karlsruhe, Haid-und-Neu-Str. 10-14, 76131, Karlsruhe, Germany",
"id": "http://www.grid.ac/institutes/grid.7892.4",
"name": [
"FZI Research Center for Information Technologies, The University of Karlsruhe, Haid-und-Neu-Str. 10-14, 76131, Karlsruhe, Germany"
],
"type": "Organization"
},
"familyName": "Motik",
"givenName": "Boris",
"id": "sg:person.07401076267.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36"
],
"type": "Person"
}
],
"datePublished": "2003",
"datePublishedReg": "2003-01-01",
"description": "Time modeling is a crucial feature in many application domains. However, temporal information often is not crisp, but is uncertain, subjective and vague. This is particularly true when representing historical information, as historical accounts are inherently imprecise. Similarly, we conjecture that in the Semantic Web representing uncertain temporal information will be a common requirement. Hence, existing approaches for temporal modeling based on crisp representation of time cannot be applied to these advanced modeling tasks. To overcome these difficulties, in this paper we present fuzzy interval-based temporal model capable of representing imprecise temporal knowledge. Our approach naturally subsumes existing crisp temporal models, i.e. crisp temporal relationships are intuitively represented in our system. Apart from presenting the fuzzy temporal model, we discuss how this model is integrated with the ontology model to allow annotating ontology definitions with time specifications.",
"editor": [
{
"familyName": "Meersman",
"givenName": "Robert",
"type": "Person"
},
{
"familyName": "Tari",
"givenName": "Zahir",
"type": "Person"
},
{
"familyName": "Schmidt",
"givenName": "Douglas C.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-39964-3_57",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-20498-5",
"978-3-540-39964-3"
],
"name": "On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE",
"type": "Book"
},
"keywords": [
"temporal knowledge",
"temporal model",
"temporal information",
"fuzzy temporal model",
"uncertain temporal information",
"Semantic Web",
"ontology model",
"application domains",
"ontology definition",
"temporal modeling",
"modeling tasks",
"time specifications",
"common requirement",
"crisp representation",
"fuzzy model",
"time modeling",
"historical information",
"information",
"crucial feature",
"ontology",
"Web",
"task",
"specification",
"modeling",
"model",
"requirements",
"representation",
"temporal relationship",
"knowledge",
"Uncertain",
"system",
"features",
"domain",
"definition",
"difficulties",
"time",
"account",
"relationship",
"historical account",
"approach",
"paper"
],
"name": "A Fuzzy Model for Representing Uncertain, Subjective, and Vague Temporal Knowledge in Ontologies",
"pagination": "906-923",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013819270"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-39964-3_57"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-39964-3_57",
"https://app.dimensions.ai/details/publication/pub.1013819270"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:43",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_213.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-540-39964-3_57"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-39964-3_57'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-39964-3_57'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-39964-3_57'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-39964-3_57'
This table displays all metadata directly associated to this object as RDF triples.
118 TRIPLES
23 PREDICATES
67 URIs
60 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-39964-3_57 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | N81f480d3f3924f98a86748d565bb0cda |
4 | ″ | schema:datePublished | 2003 |
5 | ″ | schema:datePublishedReg | 2003-01-01 |
6 | ″ | schema:description | Time modeling is a crucial feature in many application domains. However, temporal information often is not crisp, but is uncertain, subjective and vague. This is particularly true when representing historical information, as historical accounts are inherently imprecise. Similarly, we conjecture that in the Semantic Web representing uncertain temporal information will be a common requirement. Hence, existing approaches for temporal modeling based on crisp representation of time cannot be applied to these advanced modeling tasks. To overcome these difficulties, in this paper we present fuzzy interval-based temporal model capable of representing imprecise temporal knowledge. Our approach naturally subsumes existing crisp temporal models, i.e. crisp temporal relationships are intuitively represented in our system. Apart from presenting the fuzzy temporal model, we discuss how this model is integrated with the ontology model to allow annotating ontology definitions with time specifications. |
7 | ″ | schema:editor | Nde53c8a2111f4022aa61795a0fe8c051 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N27f097de9f014864a41ad77aa3bd57e8 |
12 | ″ | schema:keywords | Semantic Web |
13 | ″ | ″ | Uncertain |
14 | ″ | ″ | Web |
15 | ″ | ″ | account |
16 | ″ | ″ | application domains |
17 | ″ | ″ | approach |
18 | ″ | ″ | common requirement |
19 | ″ | ″ | crisp representation |
20 | ″ | ″ | crucial feature |
21 | ″ | ″ | definition |
22 | ″ | ″ | difficulties |
23 | ″ | ″ | domain |
24 | ″ | ″ | features |
25 | ″ | ″ | fuzzy model |
26 | ″ | ″ | fuzzy temporal model |
27 | ″ | ″ | historical account |
28 | ″ | ″ | historical information |
29 | ″ | ″ | information |
30 | ″ | ″ | knowledge |
31 | ″ | ″ | model |
32 | ″ | ″ | modeling |
33 | ″ | ″ | modeling tasks |
34 | ″ | ″ | ontology |
35 | ″ | ″ | ontology definition |
36 | ″ | ″ | ontology model |
37 | ″ | ″ | paper |
38 | ″ | ″ | relationship |
39 | ″ | ″ | representation |
40 | ″ | ″ | requirements |
41 | ″ | ″ | specification |
42 | ″ | ″ | system |
43 | ″ | ″ | task |
44 | ″ | ″ | temporal information |
45 | ″ | ″ | temporal knowledge |
46 | ″ | ″ | temporal model |
47 | ″ | ″ | temporal modeling |
48 | ″ | ″ | temporal relationship |
49 | ″ | ″ | time |
50 | ″ | ″ | time modeling |
51 | ″ | ″ | time specifications |
52 | ″ | ″ | uncertain temporal information |
53 | ″ | schema:name | A Fuzzy Model for Representing Uncertain, Subjective, and Vague Temporal Knowledge in Ontologies |
54 | ″ | schema:pagination | 906-923 |
55 | ″ | schema:productId | N9b1a8fe629204d60afafeaa645dd076f |
56 | ″ | ″ | Ndb56da91d615475d8a359c409879d411 |
57 | ″ | schema:publisher | N2b345c58482d4bfcb66136516b0e1636 |
58 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013819270 |
59 | ″ | ″ | https://doi.org/10.1007/978-3-540-39964-3_57 |
60 | ″ | schema:sdDatePublished | 2022-05-20T07:43 |
61 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
62 | ″ | schema:sdPublisher | N3104273d8de34c5a8c0d68f711e5e092 |
63 | ″ | schema:url | https://doi.org/10.1007/978-3-540-39964-3_57 |
64 | ″ | sgo:license | sg:explorer/license/ |
65 | ″ | sgo:sdDataset | chapters |
66 | ″ | rdf:type | schema:Chapter |
67 | N27f097de9f014864a41ad77aa3bd57e8 | schema:isbn | 978-3-540-20498-5 |
68 | ″ | ″ | 978-3-540-39964-3 |
69 | ″ | schema:name | On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE |
70 | ″ | rdf:type | schema:Book |
71 | N2b345c58482d4bfcb66136516b0e1636 | schema:name | Springer Nature |
72 | ″ | rdf:type | schema:Organisation |
73 | N3104273d8de34c5a8c0d68f711e5e092 | schema:name | Springer Nature - SN SciGraph project |
74 | ″ | rdf:type | schema:Organization |
75 | N3a9e877966c44f4db56fb8a3ac882abb | rdf:first | N3ba3bbf6fb0e49ba996cb610c5c8e16a |
76 | ″ | rdf:rest | Na297333379f24c84a1f86bbdfcf05f31 |
77 | N3ba3bbf6fb0e49ba996cb610c5c8e16a | schema:familyName | Tari |
78 | ″ | schema:givenName | Zahir |
79 | ″ | rdf:type | schema:Person |
80 | N430e2ff8b3df4e7492112d422ff95b43 | rdf:first | sg:person.07401076267.36 |
81 | ″ | rdf:rest | rdf:nil |
82 | N7df010cbc58e4860a5d4105e7773e2f1 | schema:familyName | Meersman |
83 | ″ | schema:givenName | Robert |
84 | ″ | rdf:type | schema:Person |
85 | N81f480d3f3924f98a86748d565bb0cda | rdf:first | sg:person.016170750755.90 |
86 | ″ | rdf:rest | N430e2ff8b3df4e7492112d422ff95b43 |
87 | N9b1a8fe629204d60afafeaa645dd076f | schema:name | dimensions_id |
88 | ″ | schema:value | pub.1013819270 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | Na297333379f24c84a1f86bbdfcf05f31 | rdf:first | Ncc9ebbcb8a0c4c799c2f4c332ba7ee71 |
91 | ″ | rdf:rest | rdf:nil |
92 | Ncc9ebbcb8a0c4c799c2f4c332ba7ee71 | schema:familyName | Schmidt |
93 | ″ | schema:givenName | Douglas C. |
94 | ″ | rdf:type | schema:Person |
95 | Ndb56da91d615475d8a359c409879d411 | schema:name | doi |
96 | ″ | schema:value | 10.1007/978-3-540-39964-3_57 |
97 | ″ | rdf:type | schema:PropertyValue |
98 | Nde53c8a2111f4022aa61795a0fe8c051 | rdf:first | N7df010cbc58e4860a5d4105e7773e2f1 |
99 | ″ | rdf:rest | N3a9e877966c44f4db56fb8a3ac882abb |
100 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Information and Computing Sciences |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Information Systems |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | sg:person.016170750755.90 | schema:affiliation | grid-institutes:grid.7892.4 |
107 | ″ | schema:familyName | Nagypál |
108 | ″ | schema:givenName | Gábor |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170750755.90 |
110 | ″ | rdf:type | schema:Person |
111 | sg:person.07401076267.36 | schema:affiliation | grid-institutes:grid.7892.4 |
112 | ″ | schema:familyName | Motik |
113 | ″ | schema:givenName | Boris |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36 |
115 | ″ | rdf:type | schema:Person |
116 | grid-institutes:grid.7892.4 | schema:alternateName | FZI Research Center for Information Technologies, The University of Karlsruhe, Haid-und-Neu-Str. 10-14, 76131, Karlsruhe, Germany |
117 | ″ | schema:name | FZI Research Center for Information Technologies, The University of Karlsruhe, Haid-und-Neu-Str. 10-14, 76131, Karlsruhe, Germany |
118 | ″ | rdf:type | schema:Organization |