Evolutionary Dynamics Identification of Multi-Link Manipulators Using Runge-Kutta-Gill RBF Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Thrishantha Nanayakkara , Keigo Watanabe , Kazuo Kiguchi , Kiyotaka Izumi

ABSTRACT

This chapter discusses a method for the identification of dynamics and control of a multilink industrial robot manipulator using Runge-Kutta-Gill neural networks (RKGNNs). RKGNNs are used to identify an ordinary differential equation of the dynamics of the robot manipulator. A structured function neural network (NN) with subnetworks to represent the components of the dynamics is used in the RKGNNs. The subnetworks consist of shape adaptive radial basis function (RBF) NNs. An evolutionary algorithm is used to optimize the shape parameters and the weights of the RBFNNs. Due to the fact that the RKGNNs can accurately grasp the changing rates of the states, this method can effectively be used for long-term prediction of the states of the robot manipulator dynamics. Unlike in conventional methods, the proposed method can even be used without input torque information because a torque network is part of the function network. This method can be proposed as an effective option for the dynamics identification of manipulators with high degrees-of-freedom, as opposed to the derivation of dynamic equations and making additional hardware changes as in the case of statistical parameter identification such as linear leastsquares method. Experiments were carried out using a sevenlink industrial manipulator. More... »

PAGES

208-222

References to SciGraph publications

Book

TITLE

Soft Computing in Measurement and Information Acquisition

ISBN

978-3-642-53509-3
978-3-540-36216-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-36216-6_14

DOI

http://dx.doi.org/10.1007/978-3-540-36216-6_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007392919


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Faculty of Engineering Systems and Technology, Graduate School of Science and Engineering, Saga University, 1-Honjomachi, Saga\u00a0840-8502, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nanayakkara", 
        "givenName": "Thrishantha", 
        "id": "sg:person.0727363540.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727363540.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1-Honjomachi, Saga\u00a0840-8502, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Keigo", 
        "id": "sg:person.015455032037.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455032037.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1-Honjomachi, Saga\u00a0840-8502, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiguchi", 
        "givenName": "Kazuo", 
        "id": "sg:person.010020372111.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020372111.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saga University", 
          "id": "https://www.grid.ac/institutes/grid.412339.e", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Science and Engineering, Saga University, 1-Honjomachi, Saga\u00a0840-8502, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Izumi", 
        "givenName": "Kiyotaka", 
        "id": "sg:person.01277760753.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277760753.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00309655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672733", 
          "https://doi.org/10.1007/bf00309655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00309655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672733", 
          "https://doi.org/10.1007/bf00309655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00309655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672733", 
          "https://doi.org/10.1007/bf00309655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1993.1.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019143107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.687880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/56.20432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061189898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.548168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.572107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.623217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.655026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.661124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.701172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.728359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1985.268648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086204480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsmc.1999.825359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093961407"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "This chapter discusses a method for the identification of dynamics and control of a multilink industrial robot manipulator using Runge-Kutta-Gill neural networks (RKGNNs). RKGNNs are used to identify an ordinary differential equation of the dynamics of the robot manipulator. A structured function neural network (NN) with subnetworks to represent the components of the dynamics is used in the RKGNNs. The subnetworks consist of shape adaptive radial basis function (RBF) NNs. An evolutionary algorithm is used to optimize the shape parameters and the weights of the RBFNNs. Due to the fact that the RKGNNs can accurately grasp the changing rates of the states, this method can effectively be used for long-term prediction of the states of the robot manipulator dynamics. Unlike in conventional methods, the proposed method can even be used without input torque information because a torque network is part of the function network. This method can be proposed as an effective option for the dynamics identification of manipulators with high degrees-of-freedom, as opposed to the derivation of dynamic equations and making additional hardware changes as in the case of statistical parameter identification such as linear leastsquares method. Experiments were carried out using a sevenlink industrial manipulator.", 
    "editor": [
      {
        "familyName": "Reznik", 
        "givenName": "Leon", 
        "type": "Person"
      }, 
      {
        "familyName": "Kreinovich", 
        "givenName": "Vladik", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-36216-6_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-53509-3", 
        "978-3-540-36216-6"
      ], 
      "name": "Soft Computing in Measurement and Information Acquisition", 
      "type": "Book"
    }, 
    "name": "Evolutionary Dynamics Identification of Multi-Link Manipulators Using Runge-Kutta-Gill RBF Networks", 
    "pagination": "208-222", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-36216-6_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2336ffde33ef119f09ea63ac14bbab68450d581bb040d280a75c08e97b58de14"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007392919"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-36216-6_14", 
      "https://app.dimensions.ai/details/publication/pub.1007392919"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-36216-6_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-36216-6_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-36216-6_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-36216-6_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-36216-6_14'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-36216-6_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3e40c14409cc4dab8febd87aae7dc28a
4 schema:citation sg:pub.10.1007/bf00309655
5 https://doi.org/10.1109/4235.687880
6 https://doi.org/10.1109/56.20432
7 https://doi.org/10.1109/72.548168
8 https://doi.org/10.1109/72.572107
9 https://doi.org/10.1109/72.623217
10 https://doi.org/10.1109/72.655026
11 https://doi.org/10.1109/72.661124
12 https://doi.org/10.1109/72.701172
13 https://doi.org/10.1109/72.728359
14 https://doi.org/10.1109/cdc.1985.268648
15 https://doi.org/10.1109/icsmc.1999.825359
16 https://doi.org/10.1162/evco.1993.1.1.1
17 schema:datePublished 2003
18 schema:datePublishedReg 2003-01-01
19 schema:description This chapter discusses a method for the identification of dynamics and control of a multilink industrial robot manipulator using Runge-Kutta-Gill neural networks (RKGNNs). RKGNNs are used to identify an ordinary differential equation of the dynamics of the robot manipulator. A structured function neural network (NN) with subnetworks to represent the components of the dynamics is used in the RKGNNs. The subnetworks consist of shape adaptive radial basis function (RBF) NNs. An evolutionary algorithm is used to optimize the shape parameters and the weights of the RBFNNs. Due to the fact that the RKGNNs can accurately grasp the changing rates of the states, this method can effectively be used for long-term prediction of the states of the robot manipulator dynamics. Unlike in conventional methods, the proposed method can even be used without input torque information because a torque network is part of the function network. This method can be proposed as an effective option for the dynamics identification of manipulators with high degrees-of-freedom, as opposed to the derivation of dynamic equations and making additional hardware changes as in the case of statistical parameter identification such as linear leastsquares method. Experiments were carried out using a sevenlink industrial manipulator.
20 schema:editor N40b9d2b467474463afbc7eea99ba6fcd
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nb0eb15bf46524b2697fdb406630dd7f7
25 schema:name Evolutionary Dynamics Identification of Multi-Link Manipulators Using Runge-Kutta-Gill RBF Networks
26 schema:pagination 208-222
27 schema:productId Nd87eb1d31e8f4c76b5909afc8d158298
28 Nf62ddc96a52e493a94d4aa1b8830fb53
29 Nfb9650668e764fcebb2d24e11d4873c7
30 schema:publisher N2fd52933043147c48b6ca18232700139
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007392919
32 https://doi.org/10.1007/978-3-540-36216-6_14
33 schema:sdDatePublished 2019-04-15T19:07
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N17469b2b40c5401980f4a60af61e1993
36 schema:url http://link.springer.com/10.1007/978-3-540-36216-6_14
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N17469b2b40c5401980f4a60af61e1993 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N2fd52933043147c48b6ca18232700139 schema:location Berlin, Heidelberg
43 schema:name Springer Berlin Heidelberg
44 rdf:type schema:Organisation
45 N3aa8c79d13e742d2b249ed3560ad6ef1 rdf:first sg:person.010020372111.48
46 rdf:rest N8e893b2e9b9541d8a2807393e650a2a2
47 N3e40c14409cc4dab8febd87aae7dc28a rdf:first sg:person.0727363540.15
48 rdf:rest N605f305f9b93403698c2817786707df2
49 N40b9d2b467474463afbc7eea99ba6fcd rdf:first Nca43c7426e07461380a810483d3a9b89
50 rdf:rest Nb1523b6b5e934df3aa67ffe4771cb51d
51 N52fdc99418204786bf59587e1253c6c9 schema:familyName Kreinovich
52 schema:givenName Vladik
53 rdf:type schema:Person
54 N605f305f9b93403698c2817786707df2 rdf:first sg:person.015455032037.26
55 rdf:rest N3aa8c79d13e742d2b249ed3560ad6ef1
56 N8e893b2e9b9541d8a2807393e650a2a2 rdf:first sg:person.01277760753.11
57 rdf:rest rdf:nil
58 Nb0eb15bf46524b2697fdb406630dd7f7 schema:isbn 978-3-540-36216-6
59 978-3-642-53509-3
60 schema:name Soft Computing in Measurement and Information Acquisition
61 rdf:type schema:Book
62 Nb1523b6b5e934df3aa67ffe4771cb51d rdf:first N52fdc99418204786bf59587e1253c6c9
63 rdf:rest rdf:nil
64 Nca43c7426e07461380a810483d3a9b89 schema:familyName Reznik
65 schema:givenName Leon
66 rdf:type schema:Person
67 Nd87eb1d31e8f4c76b5909afc8d158298 schema:name doi
68 schema:value 10.1007/978-3-540-36216-6_14
69 rdf:type schema:PropertyValue
70 Nf62ddc96a52e493a94d4aa1b8830fb53 schema:name dimensions_id
71 schema:value pub.1007392919
72 rdf:type schema:PropertyValue
73 Nfb9650668e764fcebb2d24e11d4873c7 schema:name readcube_id
74 schema:value 2336ffde33ef119f09ea63ac14bbab68450d581bb040d280a75c08e97b58de14
75 rdf:type schema:PropertyValue
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:person.010020372111.48 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
83 schema:familyName Kiguchi
84 schema:givenName Kazuo
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020372111.48
86 rdf:type schema:Person
87 sg:person.01277760753.11 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
88 schema:familyName Izumi
89 schema:givenName Kiyotaka
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277760753.11
91 rdf:type schema:Person
92 sg:person.015455032037.26 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
93 schema:familyName Watanabe
94 schema:givenName Keigo
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455032037.26
96 rdf:type schema:Person
97 sg:person.0727363540.15 schema:affiliation https://www.grid.ac/institutes/grid.412339.e
98 schema:familyName Nanayakkara
99 schema:givenName Thrishantha
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727363540.15
101 rdf:type schema:Person
102 sg:pub.10.1007/bf00309655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008672733
103 https://doi.org/10.1007/bf00309655
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/4235.687880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171992
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/56.20432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061189898
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/72.548168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218822
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/72.572107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218905
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/72.623217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218951
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/72.655026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218992
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/72.661124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219019
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/72.701172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219047
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/72.728359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219097
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cdc.1985.268648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086204480
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/icsmc.1999.825359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093961407
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1162/evco.1993.1.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019143107
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.412339.e schema:alternateName Saga University
130 schema:name Department of Advanced Systems Control Engineering, Graduate School of Science and Engineering, Saga University, 1-Honjomachi, Saga 840-8502, Japan
131 Department of Mechanical Engineering, Faculty of Science and Engineering, Saga University, 1-Honjomachi, Saga 840-8502, Japan
132 Faculty of Engineering Systems and Technology, Graduate School of Science and Engineering, Saga University, 1-Honjomachi, Saga 840-8502, Japan
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...