Analysis of Hessian Recovery Methods for Generating Adaptive Meshes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

Konstantin Lipnikov , Yuri Vassilevski

ABSTRACT

We study adaptive meshes which are quasi-uniform in a metric generated by the Hessian of a P 1 finite element function. We consider three most efficient methods for recovering this Hessian, one variational method and two projection methods. We compare these methods for problems with anisotropic singularities to show that all Hessian recovery methods result in acceptable adaptive meshes although the variational method gives a smaller error. More... »

PAGES

163-171

Book

TITLE

Proceedings of the 15th International Meshing Roundtable

ISBN

978-3-540-34957-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-34958-7_10

DOI

http://dx.doi.org/10.1007/978-3-540-34958-7_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044272747


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, Los Alamos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lipnikov", 
        "givenName": "Konstantin", 
        "id": "sg:person.011256543673.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256543673.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Numerical Mathematics, Los Alamos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassilevski", 
        "givenName": "Yuri", 
        "id": "sg:person.012104371362.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/nme.1620300707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042739838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.1620300707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042739838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0207(19971130)40:22<4119::aid-nme254>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043403940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0912040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142901398751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062876871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614299935615x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827501398578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883946"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "We study adaptive meshes which are quasi-uniform in a metric generated by the Hessian of a P 1 finite element function. We consider three most efficient methods for recovering this Hessian, one variational method and two projection methods. We compare these methods for problems with anisotropic singularities to show that all Hessian recovery methods result in acceptable adaptive meshes although the variational method gives a smaller error.", 
    "editor": [
      {
        "familyName": "P\u00e9bay", 
        "givenName": "Philippe P.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-34958-7_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-34957-0"
      ], 
      "name": "Proceedings of the 15th International Meshing Roundtable", 
      "type": "Book"
    }, 
    "name": "Analysis of Hessian Recovery Methods for Generating Adaptive Meshes", 
    "pagination": "163-171", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-34958-7_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d2e2e5a527b741043f96296fecfa4d98e40296aa9768620c7b9c3ad36506ccfa"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044272747"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-34958-7_10", 
      "https://app.dimensions.ai/details/publication/pub.1044272747"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000270.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-34958-7_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-34958-7_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-34958-7_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-34958-7_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-34958-7_10'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-34958-7_10 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N9fd918b11994462f91cae9035ca88390
4 schema:citation https://doi.org/10.1002/(sici)1097-0207(19971130)40:22<4119::aid-nme254>3.0.co;2-r
5 https://doi.org/10.1002/nme.1620300707
6 https://doi.org/10.1137/0912040
7 https://doi.org/10.1137/s0036142901398751
8 https://doi.org/10.1137/s003614299935615x
9 https://doi.org/10.1137/s1064827501398578
10 schema:datePublished 2006
11 schema:datePublishedReg 2006-01-01
12 schema:description We study adaptive meshes which are quasi-uniform in a metric generated by the Hessian of a P 1 finite element function. We consider three most efficient methods for recovering this Hessian, one variational method and two projection methods. We compare these methods for problems with anisotropic singularities to show that all Hessian recovery methods result in acceptable adaptive meshes although the variational method gives a smaller error.
13 schema:editor Nd1d1b04e34c5437799c6ecc5cabaec1c
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf Nfee8fbad32e144278bcdc7a89f642339
18 schema:name Analysis of Hessian Recovery Methods for Generating Adaptive Meshes
19 schema:pagination 163-171
20 schema:productId N6f524ff843a34a0aa8d1cfd77c813231
21 N7c006ecf11de48feb8a786dab48d8b3d
22 Nab3ca0e3285147339a8e92810df49af8
23 schema:publisher Nceef53d771ad45fd9cc6069d920026a2
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044272747
25 https://doi.org/10.1007/978-3-540-34958-7_10
26 schema:sdDatePublished 2019-04-15T21:04
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N5885bd364f4c4a89838012451e2c0cfc
29 schema:url http://link.springer.com/10.1007/978-3-540-34958-7_10
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N25c2d3ed2cbd47d9a99a4bfdd4b4b272 rdf:first sg:person.012104371362.91
34 rdf:rest rdf:nil
35 N5885bd364f4c4a89838012451e2c0cfc schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N6f524ff843a34a0aa8d1cfd77c813231 schema:name doi
38 schema:value 10.1007/978-3-540-34958-7_10
39 rdf:type schema:PropertyValue
40 N7c006ecf11de48feb8a786dab48d8b3d schema:name dimensions_id
41 schema:value pub.1044272747
42 rdf:type schema:PropertyValue
43 N89bb326c63a349cb99b2a0d3eece173d schema:name Institute of Numerical Mathematics, Los Alamos
44 rdf:type schema:Organization
45 N9fd918b11994462f91cae9035ca88390 rdf:first sg:person.011256543673.50
46 rdf:rest N25c2d3ed2cbd47d9a99a4bfdd4b4b272
47 Nab3ca0e3285147339a8e92810df49af8 schema:name readcube_id
48 schema:value d2e2e5a527b741043f96296fecfa4d98e40296aa9768620c7b9c3ad36506ccfa
49 rdf:type schema:PropertyValue
50 Nceef53d771ad45fd9cc6069d920026a2 schema:location Berlin, Heidelberg
51 schema:name Springer Berlin Heidelberg
52 rdf:type schema:Organisation
53 Nd14229000a934b04881b2127aa0c4634 schema:familyName Pébay
54 schema:givenName Philippe P.
55 rdf:type schema:Person
56 Nd1d1b04e34c5437799c6ecc5cabaec1c rdf:first Nd14229000a934b04881b2127aa0c4634
57 rdf:rest rdf:nil
58 Nfee8fbad32e144278bcdc7a89f642339 schema:isbn 978-3-540-34957-0
59 schema:name Proceedings of the 15th International Meshing Roundtable
60 rdf:type schema:Book
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
65 schema:name Numerical and Computational Mathematics
66 rdf:type schema:DefinedTerm
67 sg:person.011256543673.50 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
68 schema:familyName Lipnikov
69 schema:givenName Konstantin
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256543673.50
71 rdf:type schema:Person
72 sg:person.012104371362.91 schema:affiliation N89bb326c63a349cb99b2a0d3eece173d
73 schema:familyName Vassilevski
74 schema:givenName Yuri
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012104371362.91
76 rdf:type schema:Person
77 https://doi.org/10.1002/(sici)1097-0207(19971130)40:22<4119::aid-nme254>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1043403940
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1002/nme.1620300707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042739838
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1137/0912040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857394
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1137/s0036142901398751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062876871
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1137/s003614299935615x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877662
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1137/s1064827501398578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883946
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
90 schema:name Los Alamos National Laboratory, Los Alamos
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...