An EMO Algorithm Using the Hypervolume Measure as Selection Criterion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Michael Emmerich , Nicola Beume , Boris Naujoks

ABSTRACT

The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is self-evident. A steady-state EMOA will be devised, that combines concepts of non-dominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well distributed set of solutions with bounded size thereby focussing on interesting regions of the Pareto front(s). By means of standard benchmark problems the algorithm will be compared to other well established EMOA. The results show that our new algorithm achieves good convergence to the Pareto front and outperforms standard methods in the hypervolume covered. We also studied the applicability of the new approach in the important field of design optimization. In order to reduce the number of time consuming precise function evaluations, the algorithm will be supported by approximate function evaluations based on Kriging metamodels. First results on an airfoil redesign problem indicate a good performance of this approach, especially if the computation of a small, bounded number of well-distributed solutions is desired. More... »

PAGES

62-76

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5

DOI

http://dx.doi.org/10.1007/978-3-540-31880-4_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022230444


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leiden Institute for Advanced Computer Science, University of Leiden, 2333 CA, Leiden, NL", 
          "id": "http://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Leiden Institute for Advanced Computer Science, University of Leiden, 2333 CA, Leiden, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emmerich", 
        "givenName": "Michael", 
        "id": "sg:person.010573246275.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573246275.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beume", 
        "givenName": "Nicola", 
        "id": "sg:person.016541700456.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541700456.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naujoks", 
        "givenName": "Boris", 
        "id": "sg:person.012206275603.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012206275603.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is self-evident. A steady-state EMOA will be devised, that combines concepts of non-dominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well distributed set of solutions with bounded size thereby focussing on interesting regions of the Pareto front(s). By means of standard benchmark problems the algorithm will be compared to other well established EMOA. The results show that our new algorithm achieves good convergence to the Pareto front and outperforms standard methods in the hypervolume covered. We also studied the applicability of the new approach in the important field of design optimization. In order to reduce the number of time consuming precise function evaluations, the algorithm will be supported by approximate function evaluations based on Kriging metamodels. First results on an airfoil redesign problem indicate a good performance of this approach, especially if the computation of a small, bounded number of well-distributed solutions is desired.", 
    "editor": [
      {
        "familyName": "Coello Coello", 
        "givenName": "Carlos A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hern\u00e1ndez Aguirre", 
        "givenName": "Arturo", 
        "type": "Person"
      }, 
      {
        "familyName": "Zitzler", 
        "givenName": "Eckart", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-31880-4_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-24983-2", 
        "978-3-540-31880-4"
      ], 
      "name": "Evolutionary Multi-Criterion Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "evolutionary multiobjective optimization algorithms", 
      "hypervolume measure", 
      "function evaluations", 
      "non-dominated sorting", 
      "approximate function evaluations", 
      "set of solutions", 
      "multiobjective optimization algorithm", 
      "standard benchmark problems", 
      "Kriging metamodel", 
      "EMO algorithms", 
      "Pareto front", 
      "optimization algorithm", 
      "benchmark problems", 
      "design optimization", 
      "redesign problem", 
      "selection operator", 
      "good convergence", 
      "bounded number", 
      "new algorithm", 
      "algorithm", 
      "problem", 
      "hypervolume", 
      "better performance", 
      "new approach", 
      "solution", 
      "interesting regions", 
      "Pareto", 
      "convergence", 
      "operators", 
      "important field", 
      "optimization", 
      "number of times", 
      "standard methods", 
      "metamodel", 
      "computation", 
      "approach", 
      "set", 
      "selection criteria", 
      "applicability", 
      "first results", 
      "number", 
      "idea", 
      "results", 
      "measures", 
      "performance", 
      "criteria", 
      "selection", 
      "field", 
      "order", 
      "concept", 
      "means", 
      "front", 
      "time", 
      "evaluation", 
      "size", 
      "method", 
      "sorting", 
      "region", 
      "steady-state EMOA", 
      "precise function evaluations", 
      "airfoil redesign problem"
    ], 
    "name": "An EMO Algorithm Using the Hypervolume Measure as Selection Criterion", 
    "pagination": "62-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022230444"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-31880-4_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-31880-4_5", 
      "https://app.dimensions.ai/details/publication/pub.1022230444"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_3.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-31880-4_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      23 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-31880-4_5 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Na4092b14d0d64f438f33f82eb530c5d8
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is self-evident. A steady-state EMOA will be devised, that combines concepts of non-dominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well distributed set of solutions with bounded size thereby focussing on interesting regions of the Pareto front(s). By means of standard benchmark problems the algorithm will be compared to other well established EMOA. The results show that our new algorithm achieves good convergence to the Pareto front and outperforms standard methods in the hypervolume covered. We also studied the applicability of the new approach in the important field of design optimization. In order to reduce the number of time consuming precise function evaluations, the algorithm will be supported by approximate function evaluations based on Kriging metamodels. First results on an airfoil redesign problem indicate a good performance of this approach, especially if the computation of a small, bounded number of well-distributed solutions is desired.
7 schema:editor N7966c908ec8b4ec9a64dfca9e1dd1beb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N28a756047f114d3fb81b18e97d7a31db
12 schema:keywords EMO algorithms
13 Kriging metamodel
14 Pareto
15 Pareto front
16 airfoil redesign problem
17 algorithm
18 applicability
19 approach
20 approximate function evaluations
21 benchmark problems
22 better performance
23 bounded number
24 computation
25 concept
26 convergence
27 criteria
28 design optimization
29 evaluation
30 evolutionary multiobjective optimization algorithms
31 field
32 first results
33 front
34 function evaluations
35 good convergence
36 hypervolume
37 hypervolume measure
38 idea
39 important field
40 interesting regions
41 means
42 measures
43 metamodel
44 method
45 multiobjective optimization algorithm
46 new algorithm
47 new approach
48 non-dominated sorting
49 number
50 number of times
51 operators
52 optimization
53 optimization algorithm
54 order
55 performance
56 precise function evaluations
57 problem
58 redesign problem
59 region
60 results
61 selection
62 selection criteria
63 selection operator
64 set
65 set of solutions
66 size
67 solution
68 sorting
69 standard benchmark problems
70 standard methods
71 steady-state EMOA
72 time
73 schema:name An EMO Algorithm Using the Hypervolume Measure as Selection Criterion
74 schema:pagination 62-76
75 schema:productId N1ca22649b3f6406d8bfca9af36611b4a
76 Nf3fc6eccbbc4405b8e42f3ac4915befb
77 schema:publisher N67c8150e1d0b47e68f2852f377fed6d2
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230444
79 https://doi.org/10.1007/978-3-540-31880-4_5
80 schema:sdDatePublished 2021-12-01T20:04
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N1fced98d52e24e00bf081986e4d26aca
83 schema:url https://doi.org/10.1007/978-3-540-31880-4_5
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N08c12b9c6e8549ba81f2c77dced12d71 schema:familyName Zitzler
88 schema:givenName Eckart
89 rdf:type schema:Person
90 N1ca22649b3f6406d8bfca9af36611b4a schema:name dimensions_id
91 schema:value pub.1022230444
92 rdf:type schema:PropertyValue
93 N1fced98d52e24e00bf081986e4d26aca schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N28a756047f114d3fb81b18e97d7a31db schema:isbn 978-3-540-24983-2
96 978-3-540-31880-4
97 schema:name Evolutionary Multi-Criterion Optimization
98 rdf:type schema:Book
99 N446d36bcb8ca4f48952882ca850fb59d rdf:first sg:person.016541700456.01
100 rdf:rest Na3f221265aa34a22a505d28df4654bfc
101 N67c2451fbe094c90a9332f1843429719 schema:familyName Hern√°ndez Aguirre
102 schema:givenName Arturo
103 rdf:type schema:Person
104 N67c8150e1d0b47e68f2852f377fed6d2 schema:name Springer Nature
105 rdf:type schema:Organisation
106 N7966c908ec8b4ec9a64dfca9e1dd1beb rdf:first Nadc46d2a9a284652ba26b6745881ba33
107 rdf:rest N954562eafe964b4e8597958dbd5dfdf5
108 N954562eafe964b4e8597958dbd5dfdf5 rdf:first N67c2451fbe094c90a9332f1843429719
109 rdf:rest Ne7d069b9f37e4952b7d8f3195b425984
110 Na3f221265aa34a22a505d28df4654bfc rdf:first sg:person.012206275603.21
111 rdf:rest rdf:nil
112 Na4092b14d0d64f438f33f82eb530c5d8 rdf:first sg:person.010573246275.51
113 rdf:rest N446d36bcb8ca4f48952882ca850fb59d
114 Nadc46d2a9a284652ba26b6745881ba33 schema:familyName Coello Coello
115 schema:givenName Carlos A.
116 rdf:type schema:Person
117 Ne7d069b9f37e4952b7d8f3195b425984 rdf:first N08c12b9c6e8549ba81f2c77dced12d71
118 rdf:rest rdf:nil
119 Nf3fc6eccbbc4405b8e42f3ac4915befb schema:name doi
120 schema:value 10.1007/978-3-540-31880-4_5
121 rdf:type schema:PropertyValue
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
126 schema:name Computation Theory and Mathematics
127 rdf:type schema:DefinedTerm
128 sg:person.010573246275.51 schema:affiliation grid-institutes:grid.5132.5
129 schema:familyName Emmerich
130 schema:givenName Michael
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573246275.51
132 rdf:type schema:Person
133 sg:person.012206275603.21 schema:affiliation grid-institutes:grid.5675.1
134 schema:familyName Naujoks
135 schema:givenName Boris
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012206275603.21
137 rdf:type schema:Person
138 sg:person.016541700456.01 schema:affiliation grid-institutes:grid.5675.1
139 schema:familyName Beume
140 schema:givenName Nicola
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541700456.01
142 rdf:type schema:Person
143 grid-institutes:grid.5132.5 schema:alternateName Leiden Institute for Advanced Computer Science, University of Leiden, 2333 CA, Leiden, NL
144 schema:name Leiden Institute for Advanced Computer Science, University of Leiden, 2333 CA, Leiden, NL
145 rdf:type schema:Organization
146 grid-institutes:grid.5675.1 schema:alternateName Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany
147 schema:name Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...