An EMO Algorithm Using the Hypervolume Measure as Selection Criterion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Michael Emmerich , Nicola Beume , Boris Naujoks

ABSTRACT

The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is self-evident. A steady-state EMOA will be devised, that combines concepts of non-dominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well distributed set of solutions with bounded size thereby focussing on interesting regions of the Pareto front(s). By means of standard benchmark problems the algorithm will be compared to other well established EMOA. The results show that our new algorithm achieves good convergence to the Pareto front and outperforms standard methods in the hypervolume covered. We also studied the applicability of the new approach in the important field of design optimization. In order to reduce the number of time consuming precise function evaluations, the algorithm will be supported by approximate function evaluations based on Kriging metamodels. First results on an airfoil redesign problem indicate a good performance of this approach, especially if the computation of a small, bounded number of well-distributed solutions is desired. More... »

PAGES

62-76

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5

DOI

http://dx.doi.org/10.1007/978-3-540-31880-4_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022230444


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leiden Institute for Advanced Computer Science, University of Leiden, 2333 CA, Leiden, NL", 
          "id": "http://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Leiden Institute for Advanced Computer Science, University of Leiden, 2333 CA, Leiden, NL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emmerich", 
        "givenName": "Michael", 
        "id": "sg:person.010573246275.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573246275.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beume", 
        "givenName": "Nicola", 
        "id": "sg:person.016541700456.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541700456.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naujoks", 
        "givenName": "Boris", 
        "id": "sg:person.012206275603.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012206275603.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is self-evident. A steady-state EMOA will be devised, that combines concepts of non-dominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well distributed set of solutions with bounded size thereby focussing on interesting regions of the Pareto front(s). By means of standard benchmark problems the algorithm will be compared to other well established EMOA. The results show that our new algorithm achieves good convergence to the Pareto front and outperforms standard methods in the hypervolume covered. We also studied the applicability of the new approach in the important field of design optimization. In order to reduce the number of time consuming precise function evaluations, the algorithm will be supported by approximate function evaluations based on Kriging metamodels. First results on an airfoil redesign problem indicate a good performance of this approach, especially if the computation of a small, bounded number of well-distributed solutions is desired.", 
    "editor": [
      {
        "familyName": "Coello Coello", 
        "givenName": "Carlos A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hern\u00e1ndez Aguirre", 
        "givenName": "Arturo", 
        "type": "Person"
      }, 
      {
        "familyName": "Zitzler", 
        "givenName": "Eckart", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-31880-4_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-24983-2", 
        "978-3-540-31880-4"
      ], 
      "name": "Evolutionary Multi-Criterion Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "evolutionary multiobjective optimization algorithms", 
      "hypervolume measure", 
      "function evaluations", 
      "non-dominated sorting", 
      "approximate function evaluations", 
      "set of solutions", 
      "multiobjective optimization algorithm", 
      "standard benchmark problems", 
      "Kriging metamodel", 
      "EMO algorithms", 
      "Pareto front", 
      "optimization algorithm", 
      "benchmark problems", 
      "design optimization", 
      "redesign problem", 
      "selection operator", 
      "good convergence", 
      "bounded number", 
      "new algorithm", 
      "algorithm", 
      "problem", 
      "hypervolume", 
      "better performance", 
      "new approach", 
      "solution", 
      "interesting regions", 
      "Pareto", 
      "convergence", 
      "operators", 
      "important field", 
      "optimization", 
      "number of times", 
      "standard methods", 
      "metamodel", 
      "computation", 
      "approach", 
      "set", 
      "selection criteria", 
      "applicability", 
      "first results", 
      "number", 
      "idea", 
      "results", 
      "measures", 
      "performance", 
      "criteria", 
      "selection", 
      "field", 
      "order", 
      "concept", 
      "means", 
      "front", 
      "time", 
      "evaluation", 
      "size", 
      "method", 
      "sorting", 
      "region", 
      "steady-state EMOA", 
      "precise function evaluations", 
      "airfoil redesign problem"
    ], 
    "name": "An EMO Algorithm Using the Hypervolume Measure as Selection Criterion", 
    "pagination": "62-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022230444"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-31880-4_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-31880-4_5", 
      "https://app.dimensions.ai/details/publication/pub.1022230444"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_274.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-31880-4_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31880-4_5'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      23 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-31880-4_5 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N42d1ce5091734ed2b3f7896f00aa7d7e
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description The hypervolume measure is one of the most frequently applied measures for comparing the results of evolutionary multiobjective optimization algorithms (EMOA). The idea to use this measure for selection is self-evident. A steady-state EMOA will be devised, that combines concepts of non-dominated sorting with a selection operator based on the hypervolume measure. The algorithm computes a well distributed set of solutions with bounded size thereby focussing on interesting regions of the Pareto front(s). By means of standard benchmark problems the algorithm will be compared to other well established EMOA. The results show that our new algorithm achieves good convergence to the Pareto front and outperforms standard methods in the hypervolume covered. We also studied the applicability of the new approach in the important field of design optimization. In order to reduce the number of time consuming precise function evaluations, the algorithm will be supported by approximate function evaluations based on Kriging metamodels. First results on an airfoil redesign problem indicate a good performance of this approach, especially if the computation of a small, bounded number of well-distributed solutions is desired.
7 schema:editor N1e12249da5614938903466c0369de5fb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9c5e186288604ee18fe98f7f72ca2ff5
12 schema:keywords EMO algorithms
13 Kriging metamodel
14 Pareto
15 Pareto front
16 airfoil redesign problem
17 algorithm
18 applicability
19 approach
20 approximate function evaluations
21 benchmark problems
22 better performance
23 bounded number
24 computation
25 concept
26 convergence
27 criteria
28 design optimization
29 evaluation
30 evolutionary multiobjective optimization algorithms
31 field
32 first results
33 front
34 function evaluations
35 good convergence
36 hypervolume
37 hypervolume measure
38 idea
39 important field
40 interesting regions
41 means
42 measures
43 metamodel
44 method
45 multiobjective optimization algorithm
46 new algorithm
47 new approach
48 non-dominated sorting
49 number
50 number of times
51 operators
52 optimization
53 optimization algorithm
54 order
55 performance
56 precise function evaluations
57 problem
58 redesign problem
59 region
60 results
61 selection
62 selection criteria
63 selection operator
64 set
65 set of solutions
66 size
67 solution
68 sorting
69 standard benchmark problems
70 standard methods
71 steady-state EMOA
72 time
73 schema:name An EMO Algorithm Using the Hypervolume Measure as Selection Criterion
74 schema:pagination 62-76
75 schema:productId N548aa813743543e3884f775c7351cc47
76 Nb26cb20c593848c5b785ff2b0bb385f2
77 schema:publisher N004d06c31ac24d5c8f144355f8fc03f7
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230444
79 https://doi.org/10.1007/978-3-540-31880-4_5
80 schema:sdDatePublished 2021-11-01T18:53
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Na760631554fd4633a2b5714164f28255
83 schema:url https://doi.org/10.1007/978-3-540-31880-4_5
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N004d06c31ac24d5c8f144355f8fc03f7 schema:name Springer Nature
88 rdf:type schema:Organisation
89 N0203143ccf92408a9382880497b4a3f5 schema:familyName Zitzler
90 schema:givenName Eckart
91 rdf:type schema:Person
92 N1e12249da5614938903466c0369de5fb rdf:first Nb544bce7dfbf4d9a9e71c7684890a8dd
93 rdf:rest N2865e2e50b8048f18eaf88cd518edab2
94 N2865e2e50b8048f18eaf88cd518edab2 rdf:first N60dedb9baf8f48919764e1c4b9f858ee
95 rdf:rest Na80c28cfce61488e8aebd300d777a06b
96 N42d1ce5091734ed2b3f7896f00aa7d7e rdf:first sg:person.010573246275.51
97 rdf:rest Nd12ba08fe3da428f807583564f03372a
98 N548aa813743543e3884f775c7351cc47 schema:name doi
99 schema:value 10.1007/978-3-540-31880-4_5
100 rdf:type schema:PropertyValue
101 N60dedb9baf8f48919764e1c4b9f858ee schema:familyName Hern√°ndez Aguirre
102 schema:givenName Arturo
103 rdf:type schema:Person
104 N8e515741a1f647e1a4fee84afe83bd50 rdf:first sg:person.012206275603.21
105 rdf:rest rdf:nil
106 N9c5e186288604ee18fe98f7f72ca2ff5 schema:isbn 978-3-540-24983-2
107 978-3-540-31880-4
108 schema:name Evolutionary Multi-Criterion Optimization
109 rdf:type schema:Book
110 Na760631554fd4633a2b5714164f28255 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Na80c28cfce61488e8aebd300d777a06b rdf:first N0203143ccf92408a9382880497b4a3f5
113 rdf:rest rdf:nil
114 Nb26cb20c593848c5b785ff2b0bb385f2 schema:name dimensions_id
115 schema:value pub.1022230444
116 rdf:type schema:PropertyValue
117 Nb544bce7dfbf4d9a9e71c7684890a8dd schema:familyName Coello Coello
118 schema:givenName Carlos A.
119 rdf:type schema:Person
120 Nd12ba08fe3da428f807583564f03372a rdf:first sg:person.016541700456.01
121 rdf:rest N8e515741a1f647e1a4fee84afe83bd50
122 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
123 schema:name Information and Computing Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
126 schema:name Computation Theory and Mathematics
127 rdf:type schema:DefinedTerm
128 sg:person.010573246275.51 schema:affiliation grid-institutes:grid.5132.5
129 schema:familyName Emmerich
130 schema:givenName Michael
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573246275.51
132 rdf:type schema:Person
133 sg:person.012206275603.21 schema:affiliation grid-institutes:grid.5675.1
134 schema:familyName Naujoks
135 schema:givenName Boris
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012206275603.21
137 rdf:type schema:Person
138 sg:person.016541700456.01 schema:affiliation grid-institutes:grid.5675.1
139 schema:familyName Beume
140 schema:givenName Nicola
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541700456.01
142 rdf:type schema:Person
143 grid-institutes:grid.5132.5 schema:alternateName Leiden Institute for Advanced Computer Science, University of Leiden, 2333 CA, Leiden, NL
144 schema:name Leiden Institute for Advanced Computer Science, University of Leiden, 2333 CA, Leiden, NL
145 rdf:type schema:Organization
146 grid-institutes:grid.5675.1 schema:alternateName Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany
147 schema:name Chair of Systems Analysis, University of Dortmund, 44221, Dortmund, Germany
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...