A Physics-Style Approach to Scalability of Distributed systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Erik Aurell , Sameh El-Ansary

ABSTRACT

Is it possible to treat large scale distributed systems as physical systems? The importance of that question stems from the fact that the behavior of many P2P systems is very complex to analyze analytically, and simulation of scales of interest can be prohibitive. In Physics, however, one is accustomed to reasoning about large systems. The limit of very large systems may actually simplify the analysis. As a first example, we here analyze the effect of the density of populated nodes in an identifier space in a P2P system. We show that while the average path length is approximately given by a function of the number of populated nodes, there is a systematic effect which depends on the density. In other words, the dependence is both on the number of address nodes and the number of populated nodes, but only through their ratio. Interestingly, this effect is negative for finite densities, showing that an amount of randomness somewhat shortens average path length. More... »

PAGES

266-272

References to SciGraph publications

Book

TITLE

Global Computing

ISBN

978-3-540-24101-0
978-3-540-31794-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-31794-4_14

DOI

http://dx.doi.org/10.1007/978-3-540-31794-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020300803


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Swedish Institute of Computer Science, Kista, Sweden", 
            "Department of Physics, KTH-Royal Institute of Technology, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aurell", 
        "givenName": "Erik", 
        "id": "sg:person.01104576776.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Department of Physics, KTH-Royal Institute of Technology, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Ansary", 
        "givenName": "Sameh", 
        "id": "sg:person.014453654471.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014453654471.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/(sici)1098-2418(199910/12)15:3/4<414::aid-rsa10>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002987129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/964723.383071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007460835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021105947", 
          "https://doi.org/10.1038/22055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027354771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.264.5163.1297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511813467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/383059.383071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099067777"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Is it possible to treat large scale distributed systems as physical systems? The importance of that question stems from the fact that the behavior of many P2P systems is very complex to analyze analytically, and simulation of scales of interest can be prohibitive. In Physics, however, one is accustomed to reasoning about large systems. The limit of very large systems may actually simplify the analysis. As a first example, we here analyze the effect of the density of populated nodes in an identifier space in a P2P system. We show that while the average path length is approximately given by a function of the number of populated nodes, there is a systematic effect which depends on the density. In other words, the dependence is both on the number of address nodes and the number of populated nodes, but only through their ratio. Interestingly, this effect is negative for finite densities, showing that an amount of randomness somewhat shortens average path length.", 
    "editor": [
      {
        "familyName": "Priami", 
        "givenName": "Corrado", 
        "type": "Person"
      }, 
      {
        "familyName": "Quaglia", 
        "givenName": "Paola", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-31794-4_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-24101-0", 
        "978-3-540-31794-4"
      ], 
      "name": "Global Computing", 
      "type": "Book"
    }, 
    "name": "A Physics-Style Approach to Scalability of Distributed systems", 
    "pagination": "266-272", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020300803"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-31794-4_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60ba76744989ec1e4b9a17b4f1c8511eb35aee5596e7a3a7c1ef924329bd5ce1"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-31794-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1020300803"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57880_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-31794-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31794-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31794-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31794-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31794-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-31794-4_14 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N6e3c02b5273948de9517c66aa8f505b8
4 schema:citation sg:pub.10.1038/22055
5 https://doi.org/10.1002/(sici)1098-2418(199910/12)15:3/4<414::aid-rsa10>3.0.co;2-g
6 https://doi.org/10.1017/cbo9780511813467
7 https://doi.org/10.1126/science.1073287
8 https://doi.org/10.1126/science.264.5163.1297
9 https://doi.org/10.1145/383059.383071
10 https://doi.org/10.1145/964723.383071
11 schema:datePublished 2005
12 schema:datePublishedReg 2005-01-01
13 schema:description Is it possible to treat large scale distributed systems as physical systems? The importance of that question stems from the fact that the behavior of many P2P systems is very complex to analyze analytically, and simulation of scales of interest can be prohibitive. In Physics, however, one is accustomed to reasoning about large systems. The limit of very large systems may actually simplify the analysis. As a first example, we here analyze the effect of the density of populated nodes in an identifier space in a P2P system. We show that while the average path length is approximately given by a function of the number of populated nodes, there is a systematic effect which depends on the density. In other words, the dependence is both on the number of address nodes and the number of populated nodes, but only through their ratio. Interestingly, this effect is negative for finite densities, showing that an amount of randomness somewhat shortens average path length.
14 schema:editor Nba22a2a27415463b93692c4dcda68187
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nfb825d0c084e4343b66dd73a4acab0a9
19 schema:name A Physics-Style Approach to Scalability of Distributed systems
20 schema:pagination 266-272
21 schema:productId N830ecbb2def74701823a044c77470f66
22 Ncfdaa7868b3e42c3844575a036e3d8bf
23 Nffee88e2ca4a4ce8919909a1f4fff878
24 schema:publisher Nf3aa74c37be64f0a9fffb23c422861e6
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300803
26 https://doi.org/10.1007/978-3-540-31794-4_14
27 schema:sdDatePublished 2019-04-16T07:30
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N167385ef7a744796ba42e7b3a6381e77
30 schema:url https://link.springer.com/10.1007%2F978-3-540-31794-4_14
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N0d720c6ed34c4deb9ec6ecc7605874d5 schema:familyName Quaglia
35 schema:givenName Paola
36 rdf:type schema:Person
37 N167385ef7a744796ba42e7b3a6381e77 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N6e3c02b5273948de9517c66aa8f505b8 rdf:first sg:person.01104576776.49
40 rdf:rest Nf87d144e2785457380ff239fcd2a7b07
41 N830ecbb2def74701823a044c77470f66 schema:name readcube_id
42 schema:value 60ba76744989ec1e4b9a17b4f1c8511eb35aee5596e7a3a7c1ef924329bd5ce1
43 rdf:type schema:PropertyValue
44 N83439cf49b264c0cab32bb40e174eb6c rdf:first N0d720c6ed34c4deb9ec6ecc7605874d5
45 rdf:rest rdf:nil
46 Nba22a2a27415463b93692c4dcda68187 rdf:first Nbec80c068adf4a0b9d96197433efa971
47 rdf:rest N83439cf49b264c0cab32bb40e174eb6c
48 Nbec80c068adf4a0b9d96197433efa971 schema:familyName Priami
49 schema:givenName Corrado
50 rdf:type schema:Person
51 Ncfdaa7868b3e42c3844575a036e3d8bf schema:name dimensions_id
52 schema:value pub.1020300803
53 rdf:type schema:PropertyValue
54 Nf3aa74c37be64f0a9fffb23c422861e6 schema:location Berlin, Heidelberg
55 schema:name Springer Berlin Heidelberg
56 rdf:type schema:Organisation
57 Nf87d144e2785457380ff239fcd2a7b07 rdf:first sg:person.014453654471.34
58 rdf:rest rdf:nil
59 Nfb825d0c084e4343b66dd73a4acab0a9 schema:isbn 978-3-540-24101-0
60 978-3-540-31794-4
61 schema:name Global Computing
62 rdf:type schema:Book
63 Nffee88e2ca4a4ce8919909a1f4fff878 schema:name doi
64 schema:value 10.1007/978-3-540-31794-4_14
65 rdf:type schema:PropertyValue
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
70 schema:name Computer Software
71 rdf:type schema:DefinedTerm
72 sg:person.01104576776.49 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
73 schema:familyName Aurell
74 schema:givenName Erik
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49
76 rdf:type schema:Person
77 sg:person.014453654471.34 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
78 schema:familyName El-Ansary
79 schema:givenName Sameh
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014453654471.34
81 rdf:type schema:Person
82 sg:pub.10.1038/22055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021105947
83 https://doi.org/10.1038/22055
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/(sici)1098-2418(199910/12)15:3/4<414::aid-rsa10>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1002987129
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1017/cbo9780511813467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666741
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1126/science.1073287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027354771
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1126/science.264.5163.1297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548249
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1145/383059.383071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099067777
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1145/964723.383071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007460835
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.5037.1 schema:alternateName Royal Institute of Technology
98 schema:name Department of Physics, KTH-Royal Institute of Technology, Stockholm, Sweden
99 Swedish Institute of Computer Science, Kista, Sweden
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...