An Introduction to Dynamical Systems and Neuronal Dynamics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Alla Borisyuk , Avner Friedman , Ermentrout , David Terman

ABSTRACT

1. Introduction 2. One Dimensional Equations 2.1. The Geometric Approach 2.2. Bifurcations 2.3. Bistability and Hysteresis 3. Two Dimensional Systems 3.1. The Phase Plane 3.2. An Example 3.3. Oscillations 3.4. Local Bifurcations 3.5. Global Bifurcations 3.6. Geometric Singular Perturbation Theory 4. Single Neurons 4.1. Some Biology 4.2. The Hodgkin-Huxley Equations 4.3. Reduced Models 4.4. Bursting Oscillations 4.5. Traveling Wave Solutions 5. Two Mutually Coupled Cells 5.1. Introduction 5.2. Synaptic Coupling 5.3. Geometric Approach 5.4. Synchrony with Excitatory Synapses 5.5. Desynchrony with Inhibitory Synapses 6. Activity Patterns in the Basal Ganglia 6.1. Introduction 6.2. The Basal Ganglia 6.3. The Model 6.4. Activity Patterns 6.5. Concluding Remarks References More... »

PAGES

21-68

Book

TITLE

Tutorials in Mathematical Biosciences I

ISBN

978-3-540-23858-4
978-3-540-31544-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-31544-5_2

DOI

http://dx.doi.org/10.1007/978-3-540-31544-5_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037921067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Borisyuk", 
        "givenName": "Alla", 
        "id": "sg:person.01125201355.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125201355.34"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Friedman", 
        "givenName": "Avner", 
        "id": "sg:person.016126315257.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016126315257.55"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Ermentrout", 
        "id": "sg:person.015415204154.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415204154.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, The Ohio State University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terman", 
        "givenName": "David", 
        "id": "sg:person.01143136664.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143136664.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "1. Introduction 2. One Dimensional Equations 2.1. The Geometric Approach 2.2. Bifurcations 2.3. Bistability and Hysteresis 3. Two Dimensional Systems 3.1. The Phase Plane 3.2. An Example 3.3. Oscillations 3.4. Local Bifurcations 3.5. Global Bifurcations 3.6. Geometric Singular Perturbation Theory 4. Single Neurons 4.1. Some Biology 4.2. The Hodgkin-Huxley Equations 4.3. Reduced Models 4.4. Bursting Oscillations 4.5. Traveling Wave Solutions 5. Two Mutually Coupled Cells 5.1. Introduction 5.2. Synaptic Coupling 5.3. Geometric Approach 5.4. Synchrony with Excitatory Synapses 5.5. Desynchrony with Inhibitory Synapses 6. Activity Patterns in the Basal Ganglia 6.1. Introduction 6.2. The Basal Ganglia 6.3. The Model 6.4. Activity Patterns 6.5. Concluding Remarks References", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-31544-5_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-23858-4", 
        "978-3-540-31544-5"
      ], 
      "name": "Tutorials in Mathematical Biosciences I", 
      "type": "Book"
    }, 
    "name": "An Introduction to Dynamical Systems and Neuronal Dynamics", 
    "pagination": "21-68", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-31544-5_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4a4b322aebae68a7d03ca0d9247ba91d455bfbde84cf048143aefcc974a00bd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037921067"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-31544-5_2", 
      "https://app.dimensions.ai/details/publication/pub.1037921067"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000065.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-31544-5_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31544-5_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31544-5_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31544-5_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-31544-5_2'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-31544-5_2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N9ac1a4ff411a43e09ecb9414df20c280
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description 1. Introduction 2. One Dimensional Equations 2.1. The Geometric Approach 2.2. Bifurcations 2.3. Bistability and Hysteresis 3. Two Dimensional Systems 3.1. The Phase Plane 3.2. An Example 3.3. Oscillations 3.4. Local Bifurcations 3.5. Global Bifurcations 3.6. Geometric Singular Perturbation Theory 4. Single Neurons 4.1. Some Biology 4.2. The Hodgkin-Huxley Equations 4.3. Reduced Models 4.4. Bursting Oscillations 4.5. Traveling Wave Solutions 5. Two Mutually Coupled Cells 5.1. Introduction 5.2. Synaptic Coupling 5.3. Geometric Approach 5.4. Synchrony with Excitatory Synapses 5.5. Desynchrony with Inhibitory Synapses 6. Activity Patterns in the Basal Ganglia 6.1. Introduction 6.2. The Basal Ganglia 6.3. The Model 6.4. Activity Patterns 6.5. Concluding Remarks References
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nfd135991c5764d16812dcfe9894703a3
11 schema:name An Introduction to Dynamical Systems and Neuronal Dynamics
12 schema:pagination 21-68
13 schema:productId N111a3d3ee8b745fc9190dd1cadcc4645
14 Nadb00e1db2f241bea30a8fd6c2dbe0eb
15 Ne9821d8596ad4ac7aa51c295ab04a293
16 schema:publisher Nfa3233691c1949b8857cd14afb11b4cb
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037921067
18 https://doi.org/10.1007/978-3-540-31544-5_2
19 schema:sdDatePublished 2019-04-15T22:43
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Nc7b3f080ebe04564bc62ca90bbf86325
22 schema:url http://link.springer.com/10.1007/978-3-540-31544-5_2
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N111a3d3ee8b745fc9190dd1cadcc4645 schema:name dimensions_id
27 schema:value pub.1037921067
28 rdf:type schema:PropertyValue
29 N2c19769061ce438a9a62273d24af5054 rdf:first sg:person.016126315257.55
30 rdf:rest Nd5569ee839b14f0b9e2d98b5ac8c5eae
31 N9ac1a4ff411a43e09ecb9414df20c280 rdf:first sg:person.01125201355.34
32 rdf:rest N2c19769061ce438a9a62273d24af5054
33 Nadb00e1db2f241bea30a8fd6c2dbe0eb schema:name doi
34 schema:value 10.1007/978-3-540-31544-5_2
35 rdf:type schema:PropertyValue
36 Nc35329027bc1467582aadffe6e99bf84 schema:name Department of Mathematics, The Ohio State University
37 rdf:type schema:Organization
38 Nc7b3f080ebe04564bc62ca90bbf86325 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Nd5569ee839b14f0b9e2d98b5ac8c5eae rdf:first sg:person.015415204154.88
41 rdf:rest Nfe41dacfda5b4c898953f4f75d7390af
42 Ne9821d8596ad4ac7aa51c295ab04a293 schema:name readcube_id
43 schema:value b4a4b322aebae68a7d03ca0d9247ba91d455bfbde84cf048143aefcc974a00bd
44 rdf:type schema:PropertyValue
45 Nfa3233691c1949b8857cd14afb11b4cb schema:location Berlin, Heidelberg
46 schema:name Springer Berlin Heidelberg
47 rdf:type schema:Organisation
48 Nfd135991c5764d16812dcfe9894703a3 schema:isbn 978-3-540-23858-4
49 978-3-540-31544-5
50 schema:name Tutorials in Mathematical Biosciences I
51 rdf:type schema:Book
52 Nfe41dacfda5b4c898953f4f75d7390af rdf:first sg:person.01143136664.64
53 rdf:rest rdf:nil
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
58 schema:name Applied Mathematics
59 rdf:type schema:DefinedTerm
60 sg:person.01125201355.34 schema:familyName Borisyuk
61 schema:givenName Alla
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125201355.34
63 rdf:type schema:Person
64 sg:person.01143136664.64 schema:affiliation Nc35329027bc1467582aadffe6e99bf84
65 schema:familyName Terman
66 schema:givenName David
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143136664.64
68 rdf:type schema:Person
69 sg:person.015415204154.88 schema:familyName Ermentrout
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415204154.88
71 rdf:type schema:Person
72 sg:person.016126315257.55 schema:familyName Friedman
73 schema:givenName Avner
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016126315257.55
75 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...