Simulation Semantics for Min-Max DEVS Models View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

Maâmar El-Amine Hamri , Norbert Giambiasi , Claudia Frydman

ABSTRACT

The representation of timing, a key element in modeling hardware behavior, is realized in hardware description languages including ADLIB-SABLE, Verilog, and VHDL, through delay constructs. In the real world, precise values for delays are very difficult, if not impossible, to obtain with certainty. The reasons include variations in the manufacturing process, temperature, voltage, and other environmental parameters. Consequently, simulations that employ precise delay values are susceptible to inaccurate results. This paper proposes an extension to the classical DEVS by introducing Min-Max delays. In the augmented formalism, termed Min-Max DEVS, the state of a hardware model may, in some time interval, become unknown and is represented by the symbol, φ. The occurrence of φ implies greater accuracy of the results, not lack of information. Min-Max DEVS offers a unique advantage, namely, the execution of a single simulation pass utilizing Min-Max delays is equivalent to multiple simulation passes, each corresponding to a set of precise delay values selected from the interval. This, in turn, poses a key challenge – efficient execution of the Min-Max DEVS simulator. More... »

PAGES

699-708

References to SciGraph publications

Book

TITLE

Artificial Intelligence and Simulation

ISBN

978-3-540-24476-9
978-3-540-30583-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-30583-5_74

DOI

http://dx.doi.org/10.1007/978-3-540-30583-5_74

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045861613


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
          "id": "https://www.grid.ac/institutes/grid.462878.7", 
          "name": [
            "LSIS, UMR-CNRS 6168, University of Aix-Marseille III, Av. Escadrille Normandie Niemen, 13397, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamri", 
        "givenName": "Ma\u00e2mar El-Amine", 
        "id": "sg:person.07644474220.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644474220.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
          "id": "https://www.grid.ac/institutes/grid.462878.7", 
          "name": [
            "LSIS, UMR-CNRS 6168, University of Aix-Marseille III, Av. Escadrille Normandie Niemen, 13397, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giambiasi", 
        "givenName": "Norbert", 
        "id": "sg:person.016646111315.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646111315.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
          "id": "https://www.grid.ac/institutes/grid.462878.7", 
          "name": [
            "LSIS, UMR-CNRS 6168, University of Aix-Marseille III, Av. Escadrille Normandie Niemen, 13397, Marseille Cedex 20, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frydman", 
        "givenName": "Claudia", 
        "id": "sg:person.014455567715.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014455567715.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/12.42133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061088179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dac.1979.1600117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086196894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccd.1996.563544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094760005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-95424-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711385", 
          "https://doi.org/10.1007/978-3-642-95424-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-95424-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711385", 
          "https://doi.org/10.1007/978-3-642-95424-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "The representation of timing, a key element in modeling hardware behavior, is realized in hardware description languages including ADLIB-SABLE, Verilog, and VHDL, through delay constructs. In the real world, precise values for delays are very difficult, if not impossible, to obtain with certainty. The reasons include variations in the manufacturing process, temperature, voltage, and other environmental parameters. Consequently, simulations that employ precise delay values are susceptible to inaccurate results. This paper proposes an extension to the classical DEVS by introducing Min-Max delays. In the augmented formalism, termed Min-Max DEVS, the state of a hardware model may, in some time interval, become unknown and is represented by the symbol, \u03c6. The occurrence of \u03c6 implies greater accuracy of the results, not lack of information. Min-Max DEVS offers a unique advantage, namely, the execution of a single simulation pass utilizing Min-Max delays is equivalent to multiple simulation passes, each corresponding to a set of precise delay values selected from the interval. This, in turn, poses a key challenge \u2013 efficient execution of the Min-Max DEVS simulator.", 
    "editor": [
      {
        "familyName": "Kim", 
        "givenName": "Tag Gon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-30583-5_74", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-24476-9", 
        "978-3-540-30583-5"
      ], 
      "name": "Artificial Intelligence and Simulation", 
      "type": "Book"
    }, 
    "name": "Simulation Semantics for Min-Max DEVS Models", 
    "pagination": "699-708", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045861613"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-30583-5_74"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "da7540a1539f83b29b188023e50d277f7d75eaa76ea79449cd426978b7ced5ee"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-30583-5_74", 
      "https://app.dimensions.ai/details/publication/pub.1045861613"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87082_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-30583-5_74"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30583-5_74'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30583-5_74'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30583-5_74'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-30583-5_74'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-30583-5_74 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 schema:author Na85c0f19b2864781b478067ae6e8e344
4 schema:citation sg:pub.10.1007/978-3-642-95424-5
5 https://doi.org/10.1109/12.42133
6 https://doi.org/10.1109/dac.1979.1600117
7 https://doi.org/10.1109/iccd.1996.563544
8 schema:datePublished 2005
9 schema:datePublishedReg 2005-01-01
10 schema:description The representation of timing, a key element in modeling hardware behavior, is realized in hardware description languages including ADLIB-SABLE, Verilog, and VHDL, through delay constructs. In the real world, precise values for delays are very difficult, if not impossible, to obtain with certainty. The reasons include variations in the manufacturing process, temperature, voltage, and other environmental parameters. Consequently, simulations that employ precise delay values are susceptible to inaccurate results. This paper proposes an extension to the classical DEVS by introducing Min-Max delays. In the augmented formalism, termed Min-Max DEVS, the state of a hardware model may, in some time interval, become unknown and is represented by the symbol, φ. The occurrence of φ implies greater accuracy of the results, not lack of information. Min-Max DEVS offers a unique advantage, namely, the execution of a single simulation pass utilizing Min-Max delays is equivalent to multiple simulation passes, each corresponding to a set of precise delay values selected from the interval. This, in turn, poses a key challenge – efficient execution of the Min-Max DEVS simulator.
11 schema:editor Nf7ac4b4c9bf34d25afb926953c42bbe3
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Ncbdd9d72b805405abd372dd592e59cc3
16 schema:name Simulation Semantics for Min-Max DEVS Models
17 schema:pagination 699-708
18 schema:productId N041bf37acdc84ccf8bdb738d47be5459
19 N7387bf3070fc48fe85d7a4a2750517bd
20 Ne8e5ccc24201490fbcca391faa151420
21 schema:publisher N7c09b28196dd4041bba07b8c395993d4
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045861613
23 https://doi.org/10.1007/978-3-540-30583-5_74
24 schema:sdDatePublished 2019-04-16T08:16
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nc24d38b5c2a24cb1a651f3b7e633797a
27 schema:url https://link.springer.com/10.1007%2F978-3-540-30583-5_74
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N00024c5819604ef5a8163b04dc13715f schema:familyName Kim
32 schema:givenName Tag Gon
33 rdf:type schema:Person
34 N041bf37acdc84ccf8bdb738d47be5459 schema:name doi
35 schema:value 10.1007/978-3-540-30583-5_74
36 rdf:type schema:PropertyValue
37 N08931f9bf2a542c6a8e5e6de4c4b9119 rdf:first sg:person.016646111315.77
38 rdf:rest N69500afbf2dd4d0781e46e0a4e7cb239
39 N69500afbf2dd4d0781e46e0a4e7cb239 rdf:first sg:person.014455567715.25
40 rdf:rest rdf:nil
41 N7387bf3070fc48fe85d7a4a2750517bd schema:name readcube_id
42 schema:value da7540a1539f83b29b188023e50d277f7d75eaa76ea79449cd426978b7ced5ee
43 rdf:type schema:PropertyValue
44 N7c09b28196dd4041bba07b8c395993d4 schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 Na85c0f19b2864781b478067ae6e8e344 rdf:first sg:person.07644474220.59
48 rdf:rest N08931f9bf2a542c6a8e5e6de4c4b9119
49 Nc24d38b5c2a24cb1a651f3b7e633797a schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Ncbdd9d72b805405abd372dd592e59cc3 schema:isbn 978-3-540-24476-9
52 978-3-540-30583-5
53 schema:name Artificial Intelligence and Simulation
54 rdf:type schema:Book
55 Ne8e5ccc24201490fbcca391faa151420 schema:name dimensions_id
56 schema:value pub.1045861613
57 rdf:type schema:PropertyValue
58 Nf7ac4b4c9bf34d25afb926953c42bbe3 rdf:first N00024c5819604ef5a8163b04dc13715f
59 rdf:rest rdf:nil
60 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
61 schema:name Engineering
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
64 schema:name Manufacturing Engineering
65 rdf:type schema:DefinedTerm
66 sg:person.014455567715.25 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
67 schema:familyName Frydman
68 schema:givenName Claudia
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014455567715.25
70 rdf:type schema:Person
71 sg:person.016646111315.77 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
72 schema:familyName Giambiasi
73 schema:givenName Norbert
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016646111315.77
75 rdf:type schema:Person
76 sg:person.07644474220.59 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
77 schema:familyName Hamri
78 schema:givenName Maâmar El-Amine
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644474220.59
80 rdf:type schema:Person
81 sg:pub.10.1007/978-3-642-95424-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711385
82 https://doi.org/10.1007/978-3-642-95424-5
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1109/12.42133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061088179
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/dac.1979.1600117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086196894
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1109/iccd.1996.563544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094760005
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.462878.7 schema:alternateName Laboratoire des Sciences de l'Information et des Systèmes
91 schema:name LSIS, UMR-CNRS 6168, University of Aix-Marseille III, Av. Escadrille Normandie Niemen, 13397, Marseille Cedex 20, France
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...